ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОСБЫТ» для энергоснабжения потребителя ЗАО «Р-Фарм», г. Ярославль

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОСБЫТ» для энергоснабжения потребителя ЗАО «Р-Фарм», г. Ярославль (далее по тексту — АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой двухуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительные каналы (далее - ИК) АИИС КУЭ состоят из двух уровней:

1-ый уровень – измерительно-информационные комплексы точек учета (ИИК ТУ), включающие измерительные трансформаторы напряжения (далее - ТН), измерительные трансформаторы тока (далее - ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-ой уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер филиала ОАО «МРСК Центра» - «Ярэнерго», сервер ООО «РУСЭНЕРГОСБЫТ», устройство синхронизации системного времени (далее - УССВ) ООО «РУСЭНЕРГОСБЫТ» на базе приемника GPS-сигналов типа УССВ-16HVS, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с единым календарным временем. Результаты измерений электроэнергии (W, кВт·ч) передаются в целых числах.

Цифровой сигнал с выходов счетчиков по GSM-каналу поступает на сервер филиала ОАО «МРСК Центра» - «Ярэнерго», где при помощи программного обеспечения (ПО) «Альфа-Центр» производится обработка измерительной информации (вычисление значений электро-энергии и мощности с учетом коэффициентов трансформации ТТ и ТН), её хранение, накопление и отображение, подготовка отчетных документов, а также передача данных на сервер ООО «РУСЭНЕРГОСБЫТ».

Сервер ООО «РУСЭНЕРГОСБЫТ» осуществляет обработку полученной измерительной информации, её хранение, формирование отчётных документов и последующую передачу информации путем межсерверного обмена в ОАО «АТС» и прочим заинтересованным организациям в рамках согласованного регламента.

АИИС КУЭ оснащена системой обеспечения единого времени (далее - COEB), которая формируется на всех уровнях иерархии и включает в себя устройство синхронизации системного времени УССВ-16HVS, а так же часы сервера ООО «РУСЭНЕРГОСБЫТ», сервера филиала ОАО «МРСК Центра» - «Ярэнерго» и счётчиков.

Сравнение показаний часов сервера ООО «РУСЭНЕРГОСБЫТ» и УССВ происходит с цикличностью один раз в час. Синхронизация часов сервера ООО «РУСЭНЕРГОСБЫТ» и УССВ осуществляется при расхождении показаний часов сервера ООО «РУСЭНЕРГОСБЫТ» на величину более чем ± 1 с.

Источником сигналов точного времени для сервера филиала ОАО «МРСК Центра» - «Ярэнерго» служит тайм-сервер ФГУП «ВНИИФТРИ» (NTP-сервер).

Сравнение показаний часов сервера филиала ОАО «МРСК Центра» - «Ярэнерго» и NTP-сервера происходит непрерывно. Синхронизация осуществляется не зависимо от величины расхождения показаний часов сервера и NTP-сервера.

Сравнение показаний часов счетчика и сервера филиала ОАО «МРСК Центра» - «Ярэнерго» происходит при каждом обращении сервера к счётчику, но не реже одного раза в 30 мин. Синхронизация осуществляется при расхождении показаний часов счетчика и сервера на величину более чем ± 2 с.

СОЕВ обеспечивает корректировку времени ИК АИИС КУЭ с точностью не хуже \pm 5,0 с.

Журналы событий счетчиков электроэнергии, сервера ООО «РУСЭНЕРГОСБЫТ» отра-жают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение време-ни в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии и ПО сервера. Программные средства сервера АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных и прикладное ПО «Альфа Центр».

Состав программного обеспечения уровня ИВК АИИС КУЭ приведён в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
1	2
Идентификационное наименование ПО	АльфаЦЕНТР
Номер версии (идентификационный номер) ПО	не ниже 12.01
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Другие идентификационные данные, если имеются	ac_metrology.dll

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ приведен в Таблице 2. Метрологические характеристики ИК АИИС КУЭ приведены в Таблицах 3, 4

Таблина 2

	аблица 2					
		Состав ИК				Вид
№ MK	Наименование объекта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	Сер-	электро- энергии
1	ПС 110/10 кВ «Брагино», ЗРУ-10 кВ, 3 сш 10 кВ, яч. 307	ТОЛ-СЭЩ-10 класс точности 0,2S $K_{TT} = 400/5$ Зав. №№ 32018-10, 32942-10 Госреестр № 32139-06	ЗНОЛ-СЭЩ-10 Класс точности 0,5 $K_{TH} =$ 10000/ $\sqrt{3}$ /100/ $\sqrt{3}$ Зав.№№ 02997-10, 02999-10, 03000-10 Госреестр № 35956-07	класс точности 0,5S/1,0 Зав. № 0802151241	«MPCK Центра» - СЭНЕРГОСБЫТ»	актив- ная реак- тивная
2	ПС 110/10 кВ «Брагино», ЗРУ-10 кВ, 4 сш 10 кВ, яч. 404	ТОЛ-СЭЩ-10 класс точности 0,2S К _{ТТ} =400/5 Зав. №№ 31961-10, 31954-10 Госреестр № 32139-06	ЗНОЛ-СЭЩ-10 Класс точности 0,5 $K_{TH} = 10000/\sqrt{3}/100/\sqrt{3}$ Зав.№№ 03005-10, 02993-10, 03003-10 Госреестр № 35956-07	класс точности 0,5S/1,0 Зав. № 0802151222	OAO O«Py	актив- ная реак- тивная
3	ПС 110/10 кВ «Брагино», ЗРУ-10 кВ, 4 сш 10 кВ, яч. 413	ТОЛ-СЭЩ-10 класс точности 0,2S К _{ТТ} =400/5 Зав. №№ 31703-10, 31716-10 Госреестр № 32139-06	ЗНОЛ-СЭЩ-10 Класс точности 0,5 $K_{TH} =$ 10000/ $\sqrt{3}$ /100/ $\sqrt{3}$ Зав.№№ 03005-10, 02993-10, 03003-10 Госреестр № 35956-07	класс точности 0,5S/1,0 Зав. № 0802151157	Сервер филиала «Ярэнерго»; ОО	актив- ная реак- тивная

Таблица 3

таолица 5					
		Границы допускаемой основной относительной погрешности ИК при измерении			
Номер ИК	cosφ	активной электроэнергии d, %			
		$I_{1(2)}$ £ $I_{_{H3M}}$ < $I_{_{5\%}}$	$I_{5\%}$ £ $I_{_{13M}}$ < $I_{20\%}$	$I_{20\%}$ £ I_{M3M} < $I_{100\%}$	I_{100} %£ $I_{изм}$ £ I_{120} %
1 2	1,0	±1,5	±1,4	±0,9	±0,9
1 - 3 (TT 0,2S; TH 0,5;	0,87	±1,6	±1,1	±1,0	±1,0
Счетчик 0,5S)	0,8	±1,7	±1,2	±1,0	±1,0
Счетчик 0,33)	0,5	±2,3	±1,9	±1,5	±1,5
		Границы допускаемой основной относительной погрешности ИК при измерении			
Номер ИК	cosφ	реактивной электроэнергии d, %			
		$I_{1(2)}$ £ $I_{_{H3M}}$ < $I_{_{5}}$ %	$I_{5\%}$ £ $I_{_{H3M}}$ < $I_{_{20\%}}$	I_{20} %£ I_{u3M} < I_{100} %	I _{100 %} £ I _{изм} £ I _{120 %}
1 - 3	0,8	±2,3	±2,0	±1,6	±1,6

C_{vortex} 1.0) 0,5 $\Xi_{1,7}$ $\Xi_{1,5}$ $\Xi_{1,5}$		0,5	±1,7	±1,5	±1,3	±1,3
--	--	-----	------	------	------	------

Таблица 4

** ***		Границы допускаемой относительной погрешности ИК при измерении активной				
Номер ИК	cosφ	электрической энергии в рабочих условиях эксплуатации d, %				
		$I_{1(2)}$ £ I_{M3M} < $I_{5\%}$	$I_{5\%}$ £ $I_{_{H3M}}$ < $I_{_{20\%}}$	I_{20} %£ $I_{изм} < I_{100}$ %	I ₁₀₀ %£ I изм£ I 120 %	
1 - 3	1,0	±2,0	±1,9	±1,6	±1,5	
(TT 0,2S; TH 0,5;	0,87	±2,1	±1,7	±1,7	±1,7	
Счетчик 0,5S)	0,8	±2,2	±1,8	±1,7	±1,7	
C4C140K 0,33)	0,5	±2,8	±2,5	±2,2	±2,2	
		Границы допуска	Границы допускаемой относительной погрешности ИК при измерении реактив-			
Номер ИК	cosφ	ной электрической энергии в рабочих условиях эксплуатации d, %				
_		$I_{1(2)}$ £ $I_{изм}$ < $I_{5\%}$	$I_{5\%}$ £ $I_{_{ИЗМ}}$ < $I_{_{20\%}}$	$I_{20\%}$ £ $I_{изм}$ < $I_{100\%}$	I _{100 %} £ I _{изм} £ I _{120 %}	
1 - 3	0,8	±3,9	±3,8	±3,6	±3,6	
(TT 0,2S; TH 0,5; Счетчик 1,0)	0,5	±3,5	±3,4	±3,4	±3,4	

Примечания:

- 1. Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98· Uном до 1,02· Uном;
 - сила тока от Іном до 1,2·Іном, $\cos i = 0.87$ инд;
 - температура окружающей среды: (23±2) °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9·Uном до 1,1·Uном,
 - сила тока от 0,01 · Іном до 1,2 · Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии от 5 до 35 °C;
 - для трансформаторов тока и напряжения от минус 40°C до 40.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ Р 52425-2005;
- 7. Допускается замена измерительных трансформаторов, счетчиков и компонентов АИИС КУЭ электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 3. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии СЭТ-4TM.03M среднее время наработки на отказ не менее 165000 часов;
- УССВ-16HVS среднее время наработки на отказ не менее 44000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчиков электроэнергии $T_B \le 2$ часа;
- для сервера Тв ≤ 1 час;
- для компьютера АРМ Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, сервере, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии СЭТ-4ТМ.03М 114 суток;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в Таблице 5.

Таблица 5

Наименование	Тип	Кол-во, шт.
Трансформатор тока	ТОЛ-СЭЩ-10	6
Трансформатор напряжения	3НОЛ-СЭЩ-10	6
Счётчик электрической энергии	CЭT-4TM.03M	3
Устройство синхронизации времени	УССВ-16HVS	1
Сервер ООО «РУСЭНЕРГОСБЫТ»	HP ProLiant BL460c G7	1
Сервер филиала ОАО «МРСК Центра» - «Ярэнерго»	-	1
GSM модем	Siemens MC-35i	2
GSM модем	Cinterion MC52i	1
Специализированное программное обеспечение	«АльфаЦЕНТР»	2
Методика поверки	-	1
Паспорт - формуляр	13526821.4611.021.ЭД.ПФ	1

Поверка

осуществляется по документу МП 61713-15 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОСБЫТ» для энергоснабжения потребителя ЗАО «Р-Фарм», г. Ярославль. Методика поверки», утвержденному ФГУП «ВНИИМС» в июле 2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем с ГЦИ СИ ФГУ «Нижегородский ЦСМ»;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе 13526821.4611.038.ПЕ «Технорабочий проект системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОСБЫТ» для энергоснабжения потребителя ЗАО «Р-Фарм», г. Ярославль».

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОСБЫТ» для энергоснабжения потребителя ЗАО «Р-Фарм», г. Ярославль

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

Изготовитель

ООО «РУСЭНЕРГОСБЫТ», ИНН 770628412 105066, г. Москва, ул. Ольховская д.27, стр.3

Тел.: (495) 926-99-00 Факс: (495) 280-04-50

Заявитель

Общество с ограниченной ответственностью «РусЭнергоПром» (ООО «РусЭнергоПром»)

Юридический адрес: 115114, г. Москва, Дербеневская набережная, дом 7, стр. 2

Фактический адрес: 119361, г. Москва, ул. Марии Поливановой, д. 9

Тел/факс: (499) 753-06-78

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Тел/факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

М.п.

в целях утверждения типа №30004-13 от 26.07.2013

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		С.С. Голубев
«	»	2015 г.