ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОП «ТверьАтомЭнергоСбыт» АО «АтомЭнергоСбыт» (г. Нелидово)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОП «ТверьАтомЭнергоСбыт» АО «АтомЭнергоСбыт» (г. Нелидово) (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчётных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электрической энергии в режиме измерений активной электрической энергии по ГОСТ Р 52323-2005 и ГОСТ 30206-94, и в режиме измерений реактивной электрической энергии по ГОСТ Р 52425-2005 и ГОСТ 26035-83, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК) включает в себя сервер базы данных ОП «ТверьАтомЭнергоСбыт», устройство синхронизации времени (далее – УСВ) УСВ-3, автоматизированное рабочее место персонала (АРМ), программный комплекс (ПК) «Энергосфера», каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на входы соответствующего GSM-модема, далее по основному каналу связи стандарта GSM с помощью службы передачи данных GPRS — на сервер базы данных ОП «ТверьАтомЭнергоСбыт», где производится обработка измерительной информации (перевод в именованные величины с учётом постоянной счётчика, умножение на коэффициенты трансформации), сбор, хранение результатов измерений, оформление отчётных

документов, а также передача информации всем заинтересованным субъектам в рамках согласованного регламента.

Дополнительно на верхний уровень АИИС КУЭ поступает информация об энергопотреблении из АИИС КУЭ ПС 220/110/35/10/6 кВ «Нелидово» (Госреестр № 42321-09) и АИИС КУЭ ПС 220/110/35/10/6 кВ «Нелидово» (Госреестр № 55756-13). Перечень точек измерений АИИС КУЭ со стороны смежного субъекта ОРЭ, сбор данных с которых производится в виде хml-макета формата 80020, указан в таблице 3.

Передача информации от сервера базы данных ОП «ТверьАтомЭнергоСбыт» в ПАК ОАО «АТС» за подписью ЭЦП субъекта ОРЭ и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчиков и ИВК. Источником сигналов точного времени для сервера базы данных ОП «ТверьАтомЭнергоСбыт» служит УСВ-3, синхронизирующее часы измерительных компонентов системы по сигналам проверки времени, получаемым от ГЛОНАСС/GPS-приемника. Пределы допускаемой абсолютной погрешности временного положения фронта синхросигнала $1 \Gamma \mu$ относительно шкалы времени UTC и UTC(SU) для УСВ- 3 ± 100 мкс.

Синхронизация часов сервера базы данных ОП «ТверьАтомЭнергоСбыт и УСВ-3 происходит с цикличностью один раз в час, независимо от величины расхождения показаний.

Для ИК №№6-11 синхронизация часов счетчиков и сервера базы данных ОП «ТверьАтомЭнергоСбыт» производится во время сеанса связи со счетчиками (1 раз в 30 минут). Корректировка осуществляется при расхождении показаний часов счетчиков и сервера ± 2 с, но не чаще 1 раза в сутки.

Для обеспечения единого времени АИИС КУЭ ПС 220/110/35/10/6 кВ «Нелидово» оснащена радиосервером точного времени РСТВ-01, принимающим эталонные сигналы частоты и времени, передаваемые радиостанцией РБУ. Пределы допускаемой абсолютной погрешности синхронизации фронта сигналов относительно шкалы UTC(SU) для РСТВ-01 не более ±10 мс. Корректировка часов сервера АИИС КУЭ ПС 220/110/35/10/6 кВ «Нелидово» осуществляется при расхождении показаний радиосервера точного времени и часов сервера более чем ±1 с. Сравнение показаний часов УСПД и сервера происходит при каждом сеансе связи. Синхронизация осуществляется при расхождении показаний часов УСПД и сервера на величину более чем ±1 с. Абсолютная погрешность УСПД при измерении времени в условиях внешней синхронизации по сигналам точного времени, не более ±2 с.

Для ИК №№1-5 сравнение показаний часов счетчиков и УСПД происходит с периодичностью один раз в 30 минут, синхронизация осуществляется при расхождении показаний часов счетчика и УСПД на величину более чем ± 1 с.

Погрешность СОЕВ не превышает ±5 с.

Журналы событий счетчиков электроэнергии и сервера отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПК «Энергосфера» версии 7.1, в состав которого входят программы, указанные в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Таблица 1 — Идентификационные данные ПК «Энергосфера»

1	1 1
Идентификационные признаки	Значение
Идентификационное наименование ПО	Pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	6c38ccdd09ca8f92d6f96ac33d157a0e
Алгоритм вычисления цифрового идентификатора ПО	MD5

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 — Состав 1-го и 2-го уровней ИК АИИС КУЭ ОП «ТверьАтомЭнергоСбыт» АО

«АтомЭнергоСбыт» (г. Нелидово) и их метрологические характеристики

Но-	Номер точки измере-	Наимено-	Измерительные компоненты			Вид	Метрологические характеристики ИК*		
мер ИК	ний на одно- линей- ной схеме	вание точ- ки изме- рений	TT	ТН	Счетчик электриче- ской энер- гии	1 1	энергии	ность, %	рабочих условиях, %
1	2	3	4	5	6	7	8	9	10
6	265	ПС Гиперон, фидер 10 кВ №22	ТЛМ-10 Кл.т. 0,5 300/5 Зав. № 0023 Зав. № 0515	НТМИ-10 Кл.т. 0,5 10000/100 Зав. № 1105	СЭТ- 4ТМ.03.01 Кл.т.0,5S/1,0 Зав. № 0108072153		актив- ная реак- тивная	± 1,3 ± 2,5	± 3,3 ± 5,4
7	264	ПС Гипе- рон, фидер 10 кВ №4	ТЛМ-10 Кл.т. 0,5 300/5 Зав. № 00354 Зав. № 0512	НТМИ-10 Кл.т. 0,5 10000/100 Зав. № 2930	СЭТ- 4ТМ.03.01 Кл.т.0,5S/1,0 Зав. № 0108072132	HP Proliant DL320e Gen8v2 3aB. №CZ1520 02KG	актив- ная реак- тивная	± 1,3 ± 2,5	± 3,3 ± 5,4
8	260	ПС По- ловцово, фидер 6 кВ №0	ТПЛ-10 Кл.т. 0,5 150/5 Зав. № 80767 Зав. № 62855	НАМИ-10- 95 УХЛ2 Кл.т. 0,5 6000/100 Зав. № 1198	СЭТ- 4ТМ.03.01 Кл.т.0,5S/1,0 Зав. № 0108071607		актив- ная реак- тивная	± 1,3 ± 2,5	± 3,3 ± 5,4

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10
9	262	ПС По- ловцово, фидер 6 кВ №15	ТОЛ-10 У3 Кл.т. 0,5 100/5 Зав. № 26 Зав. № 27	НАМИ-10- 95 УХЛ2 Кл.т. 0,5 6000/100 Зав. № 1198	СЭТ- 4ТМ.03.01 Кл.т.0,5S/1,0 Зав. № 0108071251		актив- ная реак- тивная	± 1,3 ± 2,5	± 3,3 ± 5,4
10	261	ПС По- ловцово, фидер 6 кВ №11	ТПЛ-10 Кл.т. 0,5 400/5 Зав. № 5241 Зав. № 527	НАМИ-10- 95 УХЛ2 Кл.т. 0,5 6000/100 Зав. № 1218	СЭТ- 4ТМ.03.01 Кл.т.0,5S/1,0 Зав. № 0108071135	HP Proliant DL320e Gen8v2 3aB. №CZ1520	актив- ная реак- тивная	± 1,3 ± 2,5	± 3,3 ± 5,4
11	263	КТП-ТВ 6/0,4 кВ п. Межа, ввод 0,4 кВ	T-0,66 M Y3 Kл.т. 0,5 600/5 3ab. № 324971 3ab. № 324977 3ab. № 324978	_	СЭТ- 4ТМ.03.09 Кл.т.0,5S/1,0 Зав. № 0108072718	02KG	актив- ная реак- тивная	± 1,1 ± 2,1	± 3,2 ± 5,3

Таблица 3 – Перечень точек измерений АИИС КУЭ со стороны смежного субъекта ОРЭ, результаты измерений по которым получают в рамках соглашения об информационном обмене

	результаты измерении по которым получают в рамках соглашения об информационном обмене								
Ha	Номер	Наимено-	Измерительные компоненты			D	Метрологические характеристики ИК*		
мер ний на ки изме	вание точ- ки измере- ний	TT		Счетчик электрической энергии	УСПД	энергии	Основная погреш-	Погреш- ность в рабочих условиях,	
1	2	3	4	5	6	7	8	9	10
1	255	ПС Нели- дово, фи- дер 6 кВ №601	ТПФМ-10 Кл.т. 0,5 400/5 Зав. № 42556 Зав. № 42125	НТМИ-6 Кл.т. 0,5	EPQS 111.21.18 LL Кл.т.0,2S/0,5 Зав. № 460537	TK16L	актив- ная реак- тивная	± 1,1 ± 2,3	± 3,0 ± 4,7
2	256	ПС Нели- дово, фи- дер 6 кВ №602	ТПЛ-10 Кл.т. 0,5 400/5 Зав. № 15350 Зав. № 10996	6000/100 Зав. № 3437	EPQS 111.21.18 LL Кл.т.0,2S/0,5 Зав. № 460652	3aв. № 004	актив- ная реак- тивная	± 1,1 ± 2,3	± 3,0 ± 4,7

Продолжение таблицы 3

1	2	3	4	5	6	7	8	9	10
3	257	ПС Нели- дово, фи- дер 6 кВ №617	ТПЛ-10 Кл.т. 0,5 400/5 Зав. № 526 Зав. № 15700		EPQS 111.21.18 LL Кл.т.0,2S/0,5 Зав. № 461519		актив- ная реак- тивная	± 1,1 ± 2,3	± 3,0 ± 4,7
4	258	ПС Нели- дово, фи- дер 6 кВ №618	ТПЛМ-10 Кл.т. 0,5 400/5 Зав. № 11248 Зав. № 11246	НТМИ-6 Кл.т. 0,5 6000/100 Зав. № 779	EPQS 111.21.18 LL Кл.т.0,2S/0,5 Зав. № 578057	ТК16L Зав. № 004	актив- ная реак- тивная	± 1,1 ± 2,3	± 3,0 ± 4,7
5	259	ПС Нелидово, фидер 6 кВ №619	ТПЛ-10 Кл.т. 0,5 400/5 Зав. № 506 Зав. № 720		EPQS 111.21.18 LL Кл.т.0,2S/0,5 Зав. № 461534		актив- ная реак- тивная	± 1,1 ± 2,3	± 3,0 ± 4,7

*Примечания

- 1 В качестве характеристик погрешности указаны границы интервала (соответствующие вероятности 0,95) относительной погрешности измерения активной и реактивной электроэнергии и средней мощности на интервале усреднения 0,5 ч.
 - 2 Основная погрешность рассчитана для следующих условий:
- параметры сети: напряжение (0.95-1.05) Uн; ток (1.0-1.2) Ін; соѕ $\mathbf{j}=0.9$ инд.; частота (50 ± 0.2) Γ ц;
 - температура окружающей среды: (23 ± 2) °C.
 - 3 Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0,9-1,1)Uн₁; диапазон силы первичного тока (0,05-1,2)Ін₁; коэффициент мощности соѕ ϕ (sin ϕ) 0,5-1,0 (0,5-0,87); частота $(50\pm0,2)$ Γ Ц;
 - температура окружающего воздуха от минус 45 до плюс 40 °C;
 - относительная влажность воздуха не более 98 % при плюс 25 °C;
 - атмосферное давление от 84,0 до 106,7 кПа.

Для счетчиков электрической энергии:

- параметры сети: диапазон вторичного напряжения (0.9-1.1) U $_1$; диапазон силы вторичного тока (0.01-1.2) І $_1$; диапазон коэффициента мощности $\cos \phi (\sin \phi) 0.5 1.0 (0.5 0.87)$; частота (50 ± 0.2) Γ $_1$;
 - магнитная индукция внешнего происхождения не более 0,5 мТл;
 - температура окружающего воздуха от минус 40 до плюс 60 °C;
 - относительная влажность воздуха не более 90 % при плюс 30 °C;
 - атмосферное давление от 70,0 до 106,7 кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 \pm 10) В; частота (50 \pm 1) Гц;
- температура окружающего воздуха от минус 40 до плюс 50 °C;
- относительная влажность воздуха не более 80 % при плюс 25 °C;
- атмосферное давление от 70,0 до 106,7 кПа.

- 4 Погрешность в рабочих условиях указана для тока 5 % $I_{\text{ном}}$ cosj = 0,8 инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№1-5 от плюс 10 до плюс 30 °C; для ИК №№6-11 от 0 до плюс 40 °C.
- 5 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена сервера и УСВ-3 на однотипные утвержденного типа. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 6 Все измерительные компоненты системы утверждены и внесены в Государственный реестр средств измерений.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4TM.03 среднее время наработки на отказ не менее T = 90~000 ч, среднее время восстановления работоспособности tB = 2 ч;
- электросчётчик EPQS среднее время наработки на отказ не менее $T=70\ 000\ \text{ч}$, среднее время восстановления работоспособности $t = 2\ \text{ч}$;
- УСВ-3 среднее время наработки на отказ не менее $T=45\ 000\ \text{ч}$, среднее время восстановления работоспособности $t = 2\ \text{ч}$;
- TK16L среднее время наработки на отказ не менее $T=55\,000$ ч, среднее время восстановления работоспособности t=2 ч;
- PCTB-01 среднее время наработки на отказ не менее $T=55\,000$ ч, среднее время восстановления работоспособности t=2 ч;
- сервер HP Proliant DL320e Gen8 среднее время наработки на отказ не менее $T=64\ 067\ v$, среднее время восстановления работоспособности v0.5 часа.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика электрической энергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - сервера.

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях не менее 111 суток; при отключении питания не менее 5 лет;
- УСПД ТК16L тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет;
- сервер хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОП «ТверьАтомЭнергоСбыт» АО «АтомЭнергоСбыт» (г. Нелидово) типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование компонента	Тип компонента	№ Госреестра	Количество
1	2	3	4
Трансформаторы тока	ТПФМ-10	814-53	2
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10	1276-59	10
Трансформаторы тока	ТПЛМ-10	2363-68	2
Трансформаторы тока	ТЛМ-10	2473-69	4
Трансформаторы тока	ТОЛ-10	7069-79	2
Трансформаторы тока	Т-0,66 М УЗ	50733-12	3
Трансформаторы напряжения	НТМИ-6	831-53	2
Трансформаторы напряжения	НТМИ-10	831-53	2
Трансформаторы напряжения антирезонансные трехфазные	НАМИ-10-95 УХЛ2	20186-00	2
Счетчики электрической энергии многофункциональные	EPQS	25971-06	5
Счетчики электрической энергии многофункциональные	СЭТ-4ТМ.03	27524-04	6
Устройства синхронизации времени	УСВ-3	51644-12	1

Наименование компонента	Тип компонента	№ Госреестра	Количество
1	2	3	4
Устройства сбора и передачи данных для автоматизации измерений и учета энергоресурсов	TK16L	36643-07	1
Радиосерверы точного времени	PCTB-01	40586-09	1
Сервер базы данных	HP Proliant DL320e Gen8v2	_	1
Методика поверки	_	_	1
Паспорт-формуляр	_	_	1
Руководство по эксплуатации	_		1

Поверка

осуществляется по документу МП 61909-15 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОП «ТверьАтомЭнергоСбыт» АО «АтомЭнергоСбыт» (г. Нелидово). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 25 августа 2015 г.

Средства поверки измерительных компонентов:

- средства поверки ТТ по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- средства поверки ТН по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- счетчик СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.124 РЭ, ИЛГШ.411151.124 РЭ1, согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- счетчик EPQS в соответствии с методикой поверки PM 1039597-26:2002 «Счетчики электрической энергии многофункциональные EPQS», утвержденной Государственной службой метрологии Литовской Республики;
- устройство синхронизации времени УСВ-3 в соответствии с документом «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки ВЛСТ 240.00.000 МП», утвержденным ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г;
- УСПД ТК16L3 в соответствии с документом «Устройство сбора и передачи данных ТК16L для автоматизации измерений и учета энергоресурсов. Методика поверки» АВБЛ.468212.041 МП, утвержденным ГЦИ СИ ФГУП «ВНИИМС» в декабре 2007 г;
- радиосерверы точного времени PCTB-01 в соответствии с документом «Радиосервер точного времени PCTB-01. Руководство по эксплуатации» ПЮЯИ.468212.039РЭ, раздел 5 «Методика поверки», утвержденным ФГУП «ВНИИФТРИ» в 22.01.09 г;

Перечень основных средств поверки:

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии ОП «ТверьАтомЭнергоСбыт» АО «АтомЭнергоСбыт» (г. Нелидово). Руководство пользователя» ЭССО.411711.АИИС.413 ИЗ. Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОП «ТверьАтомЭнергоСбыт» АО «АтомЭнергоСбыт» (г. Нелидово)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «ЭнергоСнабСтройСервис» (ООО «ЭнергоСнабСтройСервис»)

Юридический адрес: 121500, г. Москва, Дорога МКАД 60 км, дом 4А, офис 204

ИНН 7706292301

Тел/факс: +7 (4922) 42-46-09/ 42-44-93

Заявитель

Общество с ограниченной ответственностью «Альфа-Энерго» (ООО «Альфа-Энерго»)

Юридический адрес: 119435, г. Москва, Большой Саввинский пер, д. 16, пом. 1

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул.Озерная, д.46 Тел/факс: (495)437-55-77 / 437-56-66

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «_____» _____2015 г.