ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Пущино»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Пущино» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Полученные данные и результаты измерений могут использоваться для оперативного управления энергопотреблением на ПС 220 кВ «Пущино» ПАО «ФСК ЕЭС».

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (далее по тексту – ТТ) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее по тексту – ТН) по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии (далее по тексту – Сч или Счетчики), вторичные измерительные цепи и технические средства приемапередачи данных, включающие шлюзы Е-422, сетевые концентраторы, каналы связи для обеспечения информационного взаимодействия между уровнями системы;

Второй уровень – информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера Центра сбора и обработки данных (далее по тексту ЦСОД) ПАО «ФСК ЕЭС» не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ).

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени; автоматизированные рабочие места (АРМ) на базе персонального компьютера (далее по тексту – ПК); каналообразующую аппаратуру; средства связи и передачи данных.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на ИВК Центра сбора данных АИИС КУЭ. Коммуникационный сервер опроса ИВК АИИС КУЭ единой национальной (общероссийской) электрической сети (далее по тексту – ЕНЭС) «Метроскоп» автоматически опрашивает счетчики с помощью выделенного канала (основной канал связи).

По окончании опроса коммуникационный сервер автоматически производит обработку измерительной информации (умножение на коэффициенты трансформации) и передает полученные данные в базу данных (БД) сервера ИВК АИИС КУЭ ЕНЭС «Метроскоп». В сервере БД ИВК АИИС КУЭ ЕНЭС «Метроскоп» информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске. Между ЦСОД ПАО «ФСК ЕЭС» и ЦСОД филиала ПАО «ФСК ЕЭС» - МЭС Центра происходит автоматическая репликация данных по сетям единой цифровой сети связи электроэнергетики (ЕЦССЭ).

Один раз в сутки коммуникационный сервер ИВК АИИС КУЭ ЕНЭС «Метроскоп» автоматически формирует файл отчета с результатами измерений, в формате XML, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (ИАСУ КУ) ОАО «АТС» и в ОАО «СО ЕЭС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчика в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ). Устройство синхронизации системного времени обеспечивает автоматическую синхронизацию часов сервера, при превышении порога \pm 1 с происходит коррекция часов сервера. Сличение часов счетчиков и ИВК происходит при каждом сеансе связи. Коррекция проводится при расхождении часов счетчиков и сервера на значение, превышающее \pm 1 с.

Ход часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии ЕНЭС «Метроскоп» (далее по тексту – СПО АИИС КУЭ ЕНЭС «Метроскоп»). СПО АИИС КУЭ ЕНЭС «Метроскоп» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные СПО АИИС КУЭ ЕНЭС «Метроскоп», установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
1	2
Идентификационное наименование ПО	СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп»
Номер версии	1.00
(идентификационный номер) ПО	1.00
Цифровой идентификатор ПО	D233ED6393702747769A45DE8E67B57E
Другие идентификационные данные, если	
имеются	-

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го уровня ИК АИИС КУЭ приведен в таблице 2.

Таблица 2 – Состав 1-го уровня ИК АИИС КУЭ

1 40317		Состав 1-го уровня ИК			
№ ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	
1	2	3	4	5	
1	ПС 220/110/6 кВ Пущино; ВЛ-220 кВ Рязанская ГРЭС-Пущино	ТРГ-220 II* кл.т 0,2S Ктт = 1000/5 Зав. № 75; 74; 73 Госреестр № 33677-07	НАМИ-220 УХЛ 1 кл.т 0,2 Ктн = (220000/√3)/(100/√3) Зав. № 1216; 1215; 1223 Госреестр № 20344-05	СЭТ-4ТМ.03М кл.т 0,2S/0,5 Зав. № 0812080653 Госреестр № 36697-08	
2	ПС 220/110/6 кВ Пущино; ВЛ-220 кВ Ямская- Пущино	ТРГ-220 II* кл.т 0,2S Ктт = 1000/5 Зав. № 78; 77; 76 Госреестр № 33677-07	НАМИ-220 УХЛ 1 кл.т 0,2 Ктн = (220000/√3)/(100/√3) Зав. № 1211; 1219; 1203 Госреестр № 20344-05	СЭТ-4ТМ.03М кл.т 0,2S/0,5 Зав. № 0812080646 Госреестр № 36697-08	

Таблица 3 - Метрологические характеристики ИК АИИС КУЭ

таолица 3 - метрологические характеристики и мине Кэ						
		Пределы допускаемой относительной погрешности ИК при				
Номер ИК	cosφ	измерении активной электрической энергии в рабочих				
		условиях эксплуатации АИИС КУЭ (d), %				
		d _{1(2)%} ,	$d_{5\%},$	$d_{20\%},$	$d_{100\%},$	
		$I_{1(2)\%} \mathfrak{E} I_{_{M3M}} < I_{_{5} \%}$	I_{5} %£ $I_{изм}$ < I_{20} %	I_{20} %£ $I_{_{\rm H3M}}$ < $I_{100\%}$	$I_{100}{}_{\%}\mathfrak{E}I_{{}_{\!\mathit{H3M}}}\mathfrak{E}I_{120\%}$	
1	2	3	4	5	6	
	1,0	±1,2	± 0.8	±0,7	±0,7	
1.2	0,9	±1,3	±0,9	±0,8	±0,8	
1, 2 (Сч. 0,2S; TT 0,2S; TH 0,2)	0,8	±1,4	±1,0	±0,8	±0,8	
(0,7	±1,6	±1,1	±0,9	±0,9	
	0,5	±2,1	±1,4	±1,1	±1,1	

Π_1	рол	олжение	таблицы	3
	РОД	0317110111110	таолицы	\sim

продолжение таблицы 3					
Номер ИК	cosφ	Пределы допускаемой относительной погрешности ИК при измерении реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ (d), %			
1		d _{1(2)%} ,	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,
		$I_{1(2)\%} \mathfrak{E} I_{_{M3M}} < I_{_{5} \%}$	I_{5} %£ $I_{изм}$ < I_{20} %	I_{20} %£ $I_{_{\rm H3M}}$ < $I_{100\%}$	I_{100} %£ $I_{_{\mathrm{H3M}}}$ £ $I_{120\%}$
1	2	3	4	5	6
	0,9	±5,6	±2,1	±1,5	±1,4
1, 2	0,8	±4,3	±1,7	±1,2	±1,2
(Сч. 0,5; ТТ 0,2S; ТН 0,2)	0,7	±3,7	±1,6	±1,1	±1,1
	0,5	±3,2	±1,4	±1,1	±1,1

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$;
- 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
 - 3 Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения от 0,99·Uн до 1,01·Uн;
- диапазон силы тока от 0,01· Iн до 1,2·Iн;
- температура окружающего воздуха: TT и TH от минус 40 до 50 °C; счетчиков от 18 до 25 °C; ИВК от 10 до 30 °C;
 - частота (50 ± 0.15) Гц.
 - 4 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от $0.9 \cdot \text{Uh1}$ до $1.1 \cdot \text{Uh1}$; диапазон силы первичного тока от $0.01 \cdot \text{Ih1}$ до $1.2 \cdot \text{Ih1}$;
 - частота (50 ± 0.4) Гц;
 - температура окружающего воздуха от минус 40 до 50 °C.

Для счетчиков электроэнергии:

- параметры сети: диапазон вторичного напряжения от 0,8·Uн2 до 1,15·Uн2; диапазон силы вторичного тока от 0,01·Iн2 до 2·Iн2;
 - частота (50 ± 0.4) Гц;
 - температура окружающего воздуха от 10 до 30 °C.
- 5 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2.
- 6 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2 активная, реактивная.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчики электроэнергии СЭТ-4TM.03M среднее время наработки на отказ не менее 140000 часов;

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчиков фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция шкалы времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчиков электроэнергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки.
 - наличие защиты на программном уровне:
 - пароль на счетчиках электроэнергии;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в:

- счетчиках электроэнергии (функция автоматизирована).

Глубина хранения информации:

- электросчетчики тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 3,5 лет.

Знак утверждения типа

наносится на титульный лист Паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Кол-во, шт.
1	2	3
1 Трансформатор тока	ΤΡΓ-220 II*	6
2 Трансформатор напряжения	НАМИ-220 УХЛ 1	6
3 Счетчик электрической энергии многофункциональный	CЭT-4TM.03M	2
4 Методика поверки	РТ-МП-2277-500-2015	1
5 Паспорт – формуляр	АУВП.411711.ПС.054.01	1

Поверка

осуществляется по документу РТ-МП-2277-500-2015 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Пущино». Методика поверки», утвержденному ФБУ «Ростест-Москва» 15.07.2015 г.

Перечень основных средств поверки:

- для трансформаторов тока по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- для счетчиков СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ, согласованной с руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- средства измерений для проверки нагрузки на вторичные цепи TT и TH и падения напряжения в линии связи между вторичной обмоткой TH и счетчиком по МИ 3000-2006.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Пущино».

Свидетельство об аттестации методики (методов) измерений 01.00252/210-2015 от 24.06.2015 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Пущино»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».
- 3. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Изготовитель

Публичное акционерное общество «Федеральная сетевая компания Единой энергетической системы» (ПАО «ФСК ЕЭС»)

ИНН 4716016979

Юридический адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Тел.: +7 (495) 710-93-33 Факс: +7 (495) 710-96-55

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ» (ООО «ИЦ ЭАК»)

Юридический адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел.: +7 (495) 620-08-38 Факс: +7 (495) 620-08-48

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Тел.: +7 (495) 544-00-00

Аттестат аккредитации Φ БУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____» _____2015 г.