ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства для геофизических измерений УГИ

Назначение средства измерений

Устройства для геофизических измерений УГИ (в дальнейшем – УГИ) предназначены для измерения поступающих от скважинных приборов электрических сигналов напряжения и тока питания, частоты следования положительных и отрицательных импульсов с последующим преобразованием результатов сигналов в цифровую форму.

Описание средства измерений

УГИ содержат блок питания, настраиваемый по командам от персонального компьютера (ПК) с помощью специального программного обеспечения (ПО). Также УГИ содержат измерительные модули, которые позволяют измерять электрические сигналы и результаты измерений передавать в ПК.

Для связи УГИ и персонального компьютера используется кабель Ethernet.

УГИ представляют собой компьютер промышленного исполнения дооснащенный аппаратными средствами согласования электрических цепей, управляемым блоком питания и схемами выделения и приема сигналов. ПО УГИ по командам от персонального компьютера выбирает нужные рабочие режимы и обеспечивает передачу необходимой информации в ПК.

Внешний вид УГИ приведен на рисунке 1.

Место пломбирования

Рисунок 1 - Общий вид УГИ

УГИ используют в цифровых каротажных станциях для проведения геофизических исследований в скважинах, а также могут быть использованы как универсальные блоки питания и измерений.

Программное обеспечение

Встроенное программное обеспечение УГИ хранится на твердотельном запоминающем устройстве, записывается туда на заводе изготовителе и недоступно для пользователя. Конструкция обеспечивает полную защиту от доступа к программному обеспечению, и внесения в него изменений. Метрологически значимая часть автономной части ПО выделена в виде файла «sugid». Метрологические характеристики приборов нормированы с учетом влияния ПО.

Идентификационные данные программного обеспечения УГИ приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

УГИ имеют защиту программного обеспечения от непреднамеренных и преднамеренных изменений. Уровень защиты встроенного программного обеспечения — «Высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 – Метрологические и технические характеристики

Характеристика	Значение	
Установка тока питания СП (режим ТокУст)		
Диапазон силы тока питания СП в режиме ТокУст, мА	от 0 до 200	
Пределы допускаемой приведенной погрешности задания тока питания СП в режиме ТокУст, %	±2	
Установка напряжения питания СП (режим НапрУст)		
Диапазон напряжения питания СП в режиме НапрУст, В	от 0 до 180	
Пределы допускаемой приведенной погрешности задания напряжения питания СП в режиме НапрУст, %	±2	
Измерение тока питания СП (режим ТокИзм)		
Диапазон измерения тока питания СП в режиме ТокИзм, мА	от 0 до 200	
Пределы допускаемой приведенной погрешности измерения тока питания СП в режиме ТокИзм, %	±2	
Измерение напряжения питания СП (режим НапрИзм)		
Диапазон измерения напряжения питания СП в режиме НапрИзм, В	от 0 до 180	
Пределы допускаемой приведенной погрешности измерения напряжения питания СП в режиме НапрИзм, %	±2	
Измерение частоты следования положительных импульсов по жиле 1 (режим ИмпП1)		
Диапазон измерения частоты следования положительных импульсов по жиле 1 в режиме ИмпП1, кГц	от 0 до 150	
Допускаемая абсолютная погрешность измерения частоты следования положительных импульсов по жиле 1 в режиме ИмпП1, Гц	±(0,02¾ИмпП1+10)	
Измерение частоты следования отрицательных импульсов по жиле 1 (режим ИмпО1)		
Диапазон измерения частоты следования отрицательных импульсов по жиле 1 в режиме ИмпО1, кГц	от 0 до 150	
Допускаемая абсолютная погрешность измерения частоты следования отрицательных импульсов по жиле 1 в режиме ИмпО1, Гц	±(0,02×ИмпО1+10)	

Характеристика	Значение	
Измерение частоты следования положительных импульсов по жиле 3 (режим ИмпП3)		
Диапазон измерения частоты следования положительных импульсов по жиле 3 в режиме ИмпПЗ, кГц	от 0 до 150	
Допускаемая абсолютная погрешность измерения частоты следования положительных импульсов по жиле 3 в режиме ИмпП3, Гц	±(0,02 ЖИМППЗ+10)	
Измерение частоты следования отрицательных импульсов по жиле 3 (режим ИмпО3)		
Диапазон измерения частоты следования отрицательных импульсов по жиле 3 в режиме ИмпОЗ, кГц	от 0 до 150	
Допускаемая абсолютная погрешность измерения частоты следования отрицательных импульсов по жиле 3 в режиме ИмпО3, Гц	±(0,02 УЛМПОЗ+10)	
Измерение напряжения на жиле «М» относительно «N» (режим ПС)		
Диапазон измерения напряжения в режиме ПС, В	от минус 5 до плюс 5	
Пределы допускаемой приведенной погрешности измерения напряжения в режиме ПС, %	±2	
Масса, кг	8,5	
Габаритные размеры, мм	330×180×162	
Напряжение питания от сети переменного тока, В	220 ± 10 %	
Частота питания, Гц	50 ± 0.5	
Потребляемая мощность, не более, Вт	100	
Время установки рабочего режима, не более, мин	1	
Диапазон рабочих температур, °С	от 0 до 50	
Примечание - СП – скважинный прибор		

Знак утверждения типа наносится методом фотолитографии на лицевую панель приборов и типографским способом на титульный лист эксплуатационных документов.

Комплектность средства измерений

Таблица 3 – Комплектность

Tuominga 5 Rominerinoeth	
Наименование	Кол-во
Прибор УГИ SGM-PS 9026-055-20090100-2014	1 шт.
Датчик меток ДМ-02 PDA.015.002	1 шт.
Техническое описание	1 экз.
Инструкция по эксплуатации	1 экз.
Паспорт УГИ	1 экз.
Инструкция по эксплуатации пульта моториста. Инструкция по подключению датчиков глубины и меток	1 экз.
Выходная панель СП с кабелем	1 шт.
Кабель «Ethernet» (LAN)	1 шт.
Кабель питания силовой для УГИ	1 шт.
Упаковочная тара (ящик)	1 шт.
Методика поверки SGM-MP 9026-042-20090100-2015	1 экз.

Поверка

осуществляется по документу SGM-MP 9026-042-20090100-2015 «Устройство для геофизических измерений УГИ. Методика поверки», утвержденному Центром по стандартизации и метрологии при Министерстве экономики Кыргызской Республики (ЦСМ при МЭ КР) 01.05.2015 г.

Таблица 4 – Основные средства поверки

Tweenight : Streeties of extrem needplan	
Наименование	Регистрационный №
Мегаомметр ЭС0202/1М-Г	60787-15
Установка высоковольтная измерительная ПрофКиП УПУ-10М	58589-14
Прибор электроизмерительный лабораторный переносной аналоговый	10077-85
M2044	
Генератор импульсов Г5-54	4221-74
Осциллограф мультиметр С1-112А	11763-89
Катушка электрического сопротивления Р331	1162-58

Сведения о методиках (методах) измерений

приведены в документе «Устройство для геофизических измерений УГИ. Методика поверки» SGM-MP 9026-042-20090100-2015

Нормативные и технические документы, устанавливающие требования к устройствам для геофизических измерений УГИ

Стандарт предприятия. Устройство для геофизических измерений. SGM ST 9026 - 031-20090100 – 2007.

Изготовитель

Закрытое акционерное общество «МП Сигма» (ЗАО «МП Сигма») Кыргызская Республика, 724411 г. Кара-Балта, ул. Победы, д.6, кв.12

Тел. 0-3133-64001 Сайт: <u>www.sigma.kg</u>

Экспертиза проведена

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. « » 2015 г.