ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Венера»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Венера» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Полученные данные и результаты измерений могут использоваться для оперативного управления энергопотреблением на ПС 220 кВ «Венера» ПАО «ФСК ЕЭС».

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (далее по тексту – TT) по Γ OCT 7746-2001, измерительные трансформаторы напряжения (далее по тексту – TH) по Γ OCT 1983-2001, счетчики активной и реактивной электроэнергии (далее по тексту – Cч или Cчетчики), вторичные измерительные цепи и технические средства приемапередачи данных;

Второй уровень — информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), систему обеспечения единого времени (СОЕВ), коммутационное оборудование, в состав которого входят шлюзы Е-422, сетевые концентраторы, технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы;

Третий уровень – информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера Центра сбора и обработки данных (далее по тексту ЦСОД) ПАО «ФСК ЕЭС» не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ).

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени; автоматизированные рабочие места (APM) на базе персонального компьютера (далее по тексту – ПК); каналообразующую аппаратуру; средства связи и передачи данных.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, которые

усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

УСПД автоматически проводит сбор результатов измерений и состояния средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

Коммуникационный сервер опроса ИВК АИИС КУЭ единой национальной (общероссийской) электрической сети (далее по тексту – ЕНЭС) «Метроскоп» автоматически опрашивает УСПД ИВКЭ. Опрос УСПД выполняется с помощью выделенного канала (основной канал связи). При отказе основного канала связи опрос УСПД выполняется по резервному каналу связи.

По окончании опроса коммуникационный сервер автоматически производит обработку измерительной информации (умножение на коэффициенты трансформации) и передает полученные данные в базу данных (БД) сервера ИВК АИИС КУЭ ЕНЭС «Метроскоп». В сервере БД ИВК АИИС КУЭ ЕНЭС «Метроскоп» информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске. Между ЦСОД ПАО «ФСК ЕЭС» и ЦСОД филиала ПАО «ФСК ЕЭС» - МЭС Центра происходит автоматическая репликация данных по сетям единой цифровой сети связи электроэнергетики (ЕЦССЭ).

Один раз в сутки коммуникационный сервер ИВК АИИС КУЭ ЕНЭС «Метроскоп» автоматически формирует файл отчета с результатами измерений, в формате ХМL, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (ИАСУ КУ) ОАО «АТС» и в ОАО «СО ЕЭС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ). Устройство синхронизации системного времени обеспечивает автоматическую синхронизацию часов сервера, при превышении порога \pm 1 с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД - сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 1 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по оптоволоконной связи или по сети Ethernet, задержками в линиях связи пренебрегаем ввиду малости значений.

Ход часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение (далее по тексту — СПО) Автоматизированная информационно-измерительная система коммерческого учета электроэнергии ЕНЭС «Метроскоп» (далее по тексту — АИИС КУЭ ЕНЭС «Метроскоп».

СПО АИИС КУЭ ЕНЭС «Метроскоп» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные СПО АИИС КУЭ ЕНЭС «Метроскоп», установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
1	2		
Идентификационное наименование ПО	СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп»		
Номер версии	1.00		
(идентификационный номер) ПО	1.00		
Цифровой идентификатор ПО	D233ED6393702747769A45DE8E67B57E		
Другие идентификационные данные, если			
имеются	-		

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней ИК АИИС КУЭ приведен в таблице 2. Метрологические характеристики АИИС КУЭ приведены в таблице 3.

Таблица 2 – Состав 1-го и 2-го уровней ИК АИИС КУЭ

Диспетчерское Состав 1-го и 2-го уровней ИК						
№ ИК	наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	ИВКЭ (УСПД)	
1	2	3	4	5	6	
1	ВЛ-110 кВ Венера- Шестихинская с отпайками І цепь (ВЛ 110 кВ Шестихинская-1)	ТГФМ-110 кл.т 0,2S Ктт = 1000/5 Зав. № 10427; 10428; 10429 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1799; 1823; 1821 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 472209 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07	
2	ВЛ-110 кВ Венера- Шестихинская с отпайками II цепь (ВЛ 110 кВ Шестихинская-2)	ТГФМ-110 кл.т 0,2S Ктт = 1000/5 Зав. № 10430; 10431; 10432 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1054216; 1054340; 1054329 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471625 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07	

Продолжение таблицы 2

1 1	олжение таблицы 2	3	4	5	6
3	ВЛ-110 кВ Венера- Восточная с отпайками I цепь (ВЛ 110 кВ Восточная-1)	ТГФМ-110 кл.т 0,2S Ктт = 1000/5 Зав. № 10433; 10434; 10435 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1799; 1823; 1821 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471624 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
4	ВЛ-110 кВ Венера- Восточная с отпайками ІІ цепь (ВЛ 110 кВ Восточная-2)	ТГФМ-110 кл.т 0,2S Ктт = 1000/5 Зав. № 10436; 10437; 10438 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1054216; 1054340; 1054329 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471623 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
5	ВЛ-110 кВ Венера- Западная I цепь (ВЛ 110 кВ Западная-1)	ТГФМ-110 кл.т 0,2S Ктт = 500/5 Зав. № 10439; 10440; 10441 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1799; 1823; 1821 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471411 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
6	ВЛ-110 кВ Венера- Западная II цепь (ВЛ 110 кВ Западная-2)	ТГФМ-110 кл.т 0,2S Ктт = 500/5 Зав. № 10442; 10443; 10444 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1054216; 1054340; 1054329 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471412 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
7	ВЛ-110 кВ Венера- Веретье I цепь (ВЛ 110 кВ Веретье-1)	ТГФМ-110 кл.т 0,2S Ктт = 300/5 Зав. № 10445; 10446; 10447 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1799; 1823; 1821 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471627 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
8	ВЛ-110 кВ Венера- Веретье II цепь (ВЛ 110 кВ Веретье-2)	ТГФМ-110 кл.т 0,2S Ктт = 500/5 Зав. № 10448; 10449; 10450 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1054216; 1054340; 1054329 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471628 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07

Продолжение таблицы 2

11род	олжение таблицы 2 2	3	4	5	6
1	<u> </u>		НКФ-110-57 У1	3	U
9	ВЛ-110 кВ Венера- Переборы с отпайками I цепь (ВЛ 110 кВ Переборы-1)	ТГФМ-110 кл.т 0,2S Ктт = 500/5 Зав. № 10451; 10452; 10453 Госреестр № 52261-12	кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1799; 1823; 1821 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471416 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
10	ВЛ-110 кВ Венера- Переборы с отпайками II цепь (ВЛ 110 кВ Переборы-2)	ТГФМ-110 кл.т 0,2S Ктт = 500/5 Зав. № 10454; 10455; 10456 Госреестр № 52261-12	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1054216; 1054340; 1054329 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471417 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
11	ОВ 110 кВ	ТВ-110-II кл.т 0,5 Ктт = 1000/5 Зав. № 5022-А; 5022-В; 5022-С Госреестр № 19720-00	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 1799; 1823; 1821 Госреестр № 14205-94	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471413 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
12	ВЛ 220 кВ Угличская ГЭС (ГЭС-13) - Венера	ТВ-220/25 кл.т 0,5 Ктт = 600/5 Зав. № 2218-А; 2218-В; 2218-С Госреестр № 3191-72	НКФ-220-58 кл.т 0,5 Ктн = (220000/√3)/(100/√3) Зав. № 7258; 7268; 7248 Госреестр № 14626-00	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471622 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
13	ВЛ 220 кВ Рыбинская ГЭС - Венера	ТВ-220-І кл.т 1 Ктт = 600/5 Зав. № 3603-А; 3603-В; 3603-С Госреестр № 19720-00	КТН = $(220000/\sqrt{3})/(100/\sqrt{3})$ Зав. № 7258; 7268; 7248	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 471619 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07
14	ОВ 220 кВ	ТФЗМ 220Б-IV кл.т 0,5 Ктт = 600/5 Зав. № 4237; 4205; 0420 Госреестр № 6540-78	НКФ-220-58 кл.т 0,5 Ктн = (220000/√3)/(100/√3) Зав. № 7258; 7268; 7248 Госреестр № 14626-00	EPQS 111.21.18LL кл.т 0,2S/0,5 Зав. № 572092 Госреестр № 25971-06	ТК16L зав. № 007 Госреестр № 36643-07

Таблица 3 - Метрологические характеристики ИК АИИС КУЭ						
		Пределы допускаемой относительной погрешности ИК при				
***		измерении активной электрической энергии в рабочих				
Номер ИК	cosφ	условиях эксплуатации АИИС КУЭ (d), %				
		d _{1(2)%} ,	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,	
1	2	$I_{1(2)\%}$ £ $I_{\text{изм}} < I_{5\%}$	4	1 ₂₀ % Д I _{изм} < I _{100%}	6	
1		_		±0,9	±0,9	
	1,0	±1,3 ±1,4	±1,0 ±1,0	±0,9 ±1,0	±0,9 ±1,0	
1 – 10	0.8	±1, 4 ±1,5	±1,0 ±1,2	±1,1	±1,1	
(Сч. 0,2S; TT 0,2S; TH 0,5)	0,7	±1,7	±1,3	±1,2	±1,2	
	0,5	±2,4	±1,8	±1,6	±1,6	
	1,0	-	±1,9	±1,2	±1,0	
	0,9	-	±2,4	±1,4	±1,2	
11, 12, 14 (Сч. 0,2S; ТТ 0,5; ТН 0,5)	0,8	-	±2,9	±1,7	±1,4	
(C4. 0,23, 11 0,3, 111 0,3)	0,7	-	±3,6	±2,0	±1,6	
	0,5	-	±5,5	±3,0	±2,3	
	1,0	-	±3,4	±1,9	±1,4	
1.0	0,9	-	±4,4	±2,3	±1,7	
13 (Сч. 0,2S; ТТ 1; ТН 0,5)	0,8	-	±5,5	±2,9	±2,1	
(C4. 0,25, 11 1, 111 0,5)	0,7	-	±6,8	±3,5	±2,5	
	0,5	-	±10,6	±5,4	±3,8	
		Пределы допу				
		измерении реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ (d), %				
Номер ИК	cosφ			_		
		$d_{1(2)\%},$	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,	
	0.0	$I_{1(2)\%} \mathfrak{L} I_{\text{M3M}} < I_{5\%}$				
	0,9	±5,7	±2,5	±1,9	±1,9	
1 – 10 (Сч. 0,5; ТТ 0,2S; ТН 0,5)	0,8	±4,4	±1,9	±1,5	±1,5	
(C4. 0,3, 11 0,23, 111 0,3)	0,7	±3,8	±1,7	±1,4	±1,3	
	0,5	±3,2	±1,5	±1,2	±1,2	
	0,9	-	±6,5	±3,6	±2,7	
11, 12, 14	0,8	-	±4,5	±2,5	±2,0	
(Сч. 0,5; ТТ 0,5; ТН 0,5)	0,7	-	±3,6	±2,1	±1,7	
	0,5	-	±2,8	±1,7	±1,4	
	0,9	-	±12,5	±6,4	±4,5	
13	0,8	-	±8,5	±4,4	±3,1	
(Сч. 0,5; ТТ 1; ТН 0,5)	0,7	-	±6,7	±3,5	±2,5	
	0,5	-	±4,9	±2,6	±2,0	

- 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
 - 3 Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения от 0,99 · Uн до 1,01 · Uн;
- диапазон силы тока от 0,01· Iн до 1,2·Iн;
- температура окружающего воздуха: ТТ и ТН от минус 40 до 50 °C; счетчиков от 18 до 25 °C; УСПД от 10 до 30 °C; ИВК от 10 до 30 °C;
 - частота (50 ± 0.15) Гц.
 - 4 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от $0.9 \cdot \text{Uh1}$ до $1.1 \cdot \text{Uh1}$; диапазон силы первичного тока от $0.01 \cdot \text{Ih1}$ до $1.2 \cdot \text{Ih1}$;
 - частота (50 ± 0.4) Гц;
 - температура окружающего воздуха от минус 40 до 50 °C.

Для счетчиков электроэнергии:

- параметры сети: диапазон вторичного напряжения от $0.8 \cdot \text{U} + 2$ до $1.15 \cdot \text{U} + 2$; диапазон силы вторичного тока от $0.01 \cdot \text{I} + 2$ до $1.2 \cdot \text{I} + 2$;
 - частота (50 ± 0.4) Гц;
 - температура окружающего воздуха от 10 до 30 °C.
- 5 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Копии актов замены, оформленных согласно действующей НД, измерительных трансформаторов и счетчиков прилагать к настоящему описанию типа и считать их неотъемлемой частью настоящего описания типа.
- 6 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2 активная, реактивная.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчики электроэнергии EPQS среднее время наработки на отказ не менее 70000 часов, среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 55 000 часов, среднее время восстановления работоспособности 1 час.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчиков и УСПД фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция шкалы времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчиков электроэнергии;
 - промежуточных клеммников вторичных цепей напряжения;

- испытательной коробки;
- УСПД.
- наличие защиты на программном уровне:
 - пароль на счетчиках электроэнергии;
 - пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в:

- счетчиках электроэнергии (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- электросчетчики тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет;
- ИВКЭ суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 5 лет.
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 3,5 лет.

Знак утверждения типа

наносится на титульный лист Паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Кол-во, шт.
1	2	3
1 Трансформатор тока	ТГΦМ-110	30
2 Трансформатор тока	TB-110-II	3
3 Трансформатор тока	TB-220/25	3
4 Трансформатор тока	TB-220-I	3
5 Трансформатор тока	ТФЗМ 220Б-IV	3
6 Трансформатор напряжения	НКФ-110-57 У1	6
7 Трансформатор напряжения	НКФ-220-58	3
8 Счетчик электрической энергии многофункциональный	EPQS 111.21.18LL	14
9 Устройство сбора и передачи данных	TK16L	1
10 Методика поверки	РТ-МП-2497-500-2015	1
11 Паспорт – формуляр	АУВП.411711.ФСК.058.05.ПС-ФО	1

Поверка

осуществляется по документу РТ-МП-2497-500-2015 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Венера». Методика поверки», утвержденному ФБУ «Ростест-Москва» 14.08.2015 г.

Перечень основных средств поверки:

- для трансформаторов тока по ГОСТ 8.217-2003~ «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- для счетчиков электроэнергии EPQS по документу «Счетчики электрической энергии многофункциональные EPQS. Методика поверки PM 1039597-26:2002»;
- для УСПД ТК16L по документу «Устройство сбора и передачи данных ТК16L для автоматизации измерений и учета энергоресурсов. Методика поверки» АВБЛ.468212.041 МП, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в декабре 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- средства измерений для проверки нагрузки на вторичные цепи ТТ и ТН и падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком по МИ 3000-2006.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Венера». Свидетельство об аттестации методики (методов) измерений 01.00252/143-2015 от 22.05.2015 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Венера»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».
- 3. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Изготовитель

Публичное акционерное общество «Федеральная сетевая компания Единой энергетической системы» (ПАО «ФСК ЕЭС»)

ИНН 4716016979

Юридический адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Тел.: +7 (495) 710-93-33 Факс: +7 (495) 710-96-55

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ» (ООО «ИЦ ЭАК»)

Юридический адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел.: +7 (495) 620-08-38 Факс: +7 (495) 620-08-48

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Тел.: +7 (495) 544-00-00

Аттестат аккредитации Φ БУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2015 г.