ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дефектоскопы ультразвуковые ЕРОСН 650

Назначение средства измерений

Дефектоскопы ультразвуковые ЕРОСН 650 (далее дефектоскопы) предназначены для:

- измерений глубины залегания дефекта, расстояний от точки выхода преобразователя до проекции центра дефекта на поверхность сканирования (с наклонным преобразователем), толщины изделий из металла и сплавов;
- обнаружения дефектов сварных соединений, в стенках труб, в основном металле резервуаров, турбин, узлов конструкций и др.

Описание средства измерений

Принцип действия дефектоскопов основан на акустическом методе.

В дефектоскопах используются следующие методы акустического неразрушающего контроля:

- эхо-импульсный,
- теневой,
- контроль раздельно-совмещенным преобразователем.

Ультразвуковая волна, генерируемая преобразователем дефектоскопа, проникает в объект контроля и, отражаясь от границы дефекта или донной поверхности, возвращается обратно, преобразуется в электрический сигнал и обрабатывается электронным блоком. По времени распространения ультразвукового импульса в изделии от поверхности ввода ультразвука до границы дефекта или донных сигналов и обратно определяется глубина залегания дефекта и (или) толщина контролируемого изделия.

Конструктивно дефектоскопы состоят из электронного блока и преобразователя, соединенных кабелем.

Дефектоскопы могут быть оснащены следующими типами ультразвуковых преобразователей, изготавливаемых компанией «Olympus Scientific Solutions Americas» под торговыми марками «PANAMETRICS-NDT», «HARISONIC», «NDT ENGINEERING»:

- одноэлементные контактные серий M, A, C, V, SUC, CN, PF;
- раздельно-совмещенные серий DHC, D, MTD, DL;
- с линией задержки серий M, V, SCD, SCDR, HC;
- иммерсионные серий M, A, V, C;
- наклонные серий A, C, V, AM.

На передней панели корпуса электронного блока дефектоскопа расположены дисплей, функциональные кнопки, кнопка включения, индикаторы питания и сигнализации. На задней панели корпуса расположены подставка, аккумуляторный отсек, разъемы VGA Out и RS232. Каждый разъем закрыт резиновой накладкой. Два разъема для подключения одноэлементных и раздельно-совмещенных преобразователей, разъем для подключения зарядного устройства расположены на верхней панели корпуса. На боковой панели корпуса расположен герметичный отсек с USB-портом и слотом для карты памяти.

Дефектоскопы выпускаются в двух исполнениях: с настройкой параметров с помощью ручки регулирования на передней панели электронного блока или навигационной панели на клавиатуре.

Результаты контроля отображаются на дисплее электронного блока в режиме реального времени в виде развертки типа А (А-скан) и измеренных значений.

Рисунок 1 – Внешний вид дефектоскопов ультразвуковых ЕРОСН 650 и преобразователей

Программное обеспечение

Дефектоскопы имеют встроенное программное обеспечение (далее ПО), разработанное компанией-изготовителем. Программное обеспечение идентифицируется при каждом включении дефектоскопа путем вывода на дисплей электронного блока номера версии.

Программное обеспечение предназначено для:

- сбора, обработки и хранения данных,
- настройки дефектоскопа,
- визуализации результатов измерений.

Идентификационные данные ПО представлены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Epoch 650
Номер версии (идентификационный номер) ПО*	1.03
Цифровой идентификатор ПО	С80A76A4 (рассчитан по алгоритму CRC32)
Другие идентификационные данные (если имеются)	-

^{* —} номер версии ПО должен быть не ниже указанной в таблице.

ПО дефектоскопов соответствует среднему уровню защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014.

Влияние ПО учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Основные метрологические и технические характеристики дефектоскопов, включая показатели точности:

показатели точности.			
- диапазон измерений толщины (по стали), мм	от 1 до 500;		
- диапазон показаний толщины (по стали), мм	от 1 до 13388;		
- пределы допускаемой абсолютной погрешности			
измерений толщины, мм	$\pm (0,1 + 0,02 \cdot H);$		
(где Н - измеренное значение толщины, мм)			
- диапазон измерений глубины залегания дефекта, мм	от 1 до 500;		
- диапазон показаний глубины залегания дефекта, мм	от 1 до 13388;		
- пределы допускаемой абсолютной погрешности			
измерений глубины залегания дефекта, мм	$\pm(0,3+0,03\cdot Y);$		
(где Ү - измеренное значение глубины залегания дефекта, мм)			
- диапазон измерений расстояний от передней грани преобразователя (призмы) до проекции			
дефекта на поверхность сканирования (с наклонным преобразователем), мм от 1 до 120;			
- диапазон показаний расстояний от передней грани преобразователя (призмы) до проекции			
дефекта на поверхность сканирования (с наклонным преобразователем), мм от 1 до 13388;			
- пределы допускаемой абсолютной погрешности измерений			
расстояний от передней грани преобразователя (призмы) до проекции дефекта на			
поверхность сканирования (с наклонным преобразователем на стандартном образце СО-2			
из комплекта КОУ-2), мм $\pm (0,3+0,03\cdot X);$			
(где X - измеренное значение расстояния от передней грани преобразователя (призмы) до про-			
екции дефекта на поверхность сканирования, мм)			
- угол ввода преобразователя, градус	от 0 до 90;		
- пределы допускаемого отклонения точки выхода наклонного преобразователя, мм:			
- с номинальным значением угла ввода до 60°	$\pm 0,5;$		
- с номинальным значением угла ввода свыше 60°	$\pm 1,0;$		
- пределы допускаемого отклонения угла ввода наклонного преобразователя			
от номинального значения, градус	$\pm 2,0;$		
- диапазон скоростей распространения ультразвука			
в контролируемых материалах, м/с	от 635 до 15240;		
- питание:			
- от сети переменного тока частотой от 50 до 60 Гц, напряжением	110 B±10%;		
	220 B±10%;		
- от аккумуляторной батареи Li-Ion номинальным напряжением	11 B;		
- потребляемая мощность, Вт, не более	5;		
- габаритные размеры электронного блока, мм, не более 236			
- масса электронного блока, кг, не более			
- средний срок службы, лет 7;			
- средняя наработка на отказ, ч	30000.		

Условия эксплуатации:

- диапазон температуры окружающей среды, °C от -10 до +50;
- относительная влажность воздуха, %, не более 95 (без конденсации влаги).

Знак утверждения типа

наносится на электронный блок дефектоскопа в виде наклейки, а также на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблина 2

$N_{\underline{0}}$	Наименование	Кол-во
Π/Π		
1	Блок электронный	1 шт.
2	Преобразователь*	от 1 шт.
3	Аккумулятор литий-ионный	1 шт.
4	Зарядное устройство	1 шт.
5	Шнур питания	1 шт.
6	Держатель для щелочных батарей	1 шт.
7	Карта памяти MicroSD, 2 Гб	1 шт.
8	Кейс для транспортирования	1 шт.
9	Методика поверки МП 2512-0012-2015	1 экз.
10	Руководство по эксплуатации	1 экз.

^{*-} количество и тип преобразователей определяются в соответствии с заказом по каталогу изготовителя.

Поверка

осуществляется по документу МП 2512-0012-2015 «Дефектоскопы ультразвуковые ЕРОСН 650. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в августе 2015 г.

Основные средства поверки:

- контрольные образцы CO-2, CO-3 из комплекта КОУ-2 (Госреестр № 6612-99);
- комплект образцовых ультразвуковых мер КМТ 176M-1 (Госреестр № 6578-78);
- образцы с искусственными отражателями из комплекта КМД4-У (Госреестр № 35581-07).

Сведения о методиках (методах) измерений

приведены в документе «Дефектоскопы ультразвуковые ЕРОСН 650. Руководство по эксплуатации», 2015 г.

Нормативные и технические документы, устанавливающие требования к дефектоскопам ультразвуковым EPOCH 650

Техническая документация компании «Olympus Scientific Solutions Americas», США.

Изготовитель

Компания «Olympus Scientific Solutions Americas», США. Адрес: 48 Woerd Avenue, Waltham, Massachusetts, 02453 USA.

Телефон: +1-781-419-3900. Веб-сайт: www.olympus-ims.com.

Заявитель

ООО "ОЛИМПАС МОСКВА».

ИНН 7703026005

Адрес: 107023, г. Москва, ул. Электрозаводская, д. 27, стр. 8.

Тел. +7 (495) 956-66-91. Факс: +7 (495) 663-84-87.

Веб-сайт: www.olympus-ims.com.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», г. Санкт-Петербург.

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19.

Телефон: +7 (812) 251-76-01. Факс: +7 (812) 713-01-14. E-mail: <u>info@vniim.ru</u>. Http://www.vniim.ru.

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2015 г.