ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные ТензоТЭК

Назначение средства измерений

Преобразователи измерительные ТензоТЭК (далее – преобразователи) предназначены для измерения аналоговых выходных сигналов весо- или силоизмерительных тензорезисторных датчиков (далее – датчики) и преобразования их в значение массы или силы

Описание средства измерений

Преобразователи выполнены в отдельном корпусе и состоят из стабилизированного источника питания, встроенного аналого-цифрового преобразователя (АЦП), микропроцессора для обработки измерительной информации, цифровых интерфейсов связи RS-232/485, дисплея и клавиатуры.

Принцип действия основан на преобразовании входного электрического сигнала аналоговых весоизмерительных (силоизмерительных) датчиков АЦП, дальнейшей его обработки и выводе измерительной информации в единицах массы (кг/т) или силы (H) на цифровой встроенный дисплей преобразователя.

Преобразователи снабжены следующими устройствами (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1):

- устройство слежения за нулем (Т.2.7.3);
- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);

Преобразователи выпускаются в двух модификациях: ТензоТЭК-03 с ведением архива и ТензоТЭК-04 без ведения архива.

Внешний вид преобразователей ТензоТЭК представлен на рисунке 1.

ТензоТЭК-03

ТензоТЭК-04

Рисунок 1 - Внешний вид преобразователей ТензоТЭК

Программное обеспечение

Программное обеспечение (далее ПО) преобразователей является встроенным и метрологически значимым, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами. Идентификационным признаком ПО служит номер версии, который отображается на дисплее при включении питания или по запросу оператора в регистровой структуре (протокол Modbus RTU).

Защита от несанкционированного доступа к ПО, настройкам и данным измерений обеспечивается посредством пароля (для ТензоТЭК-03), посредством использования пломбируемой клавиши «Настройка» (для ТензоТЭК-04), а также нанесением оттиска клейма на пломбировочную мастику винта, стопорящего отвинчивание крышки от корпуса, расположенного на передней панели.

Знак поверки в виде оттиска поверительного клейма наносится на лицевую панель преобразователя или маркировочную табличку.

Схемы пломбировки приведены на рисунке 2.

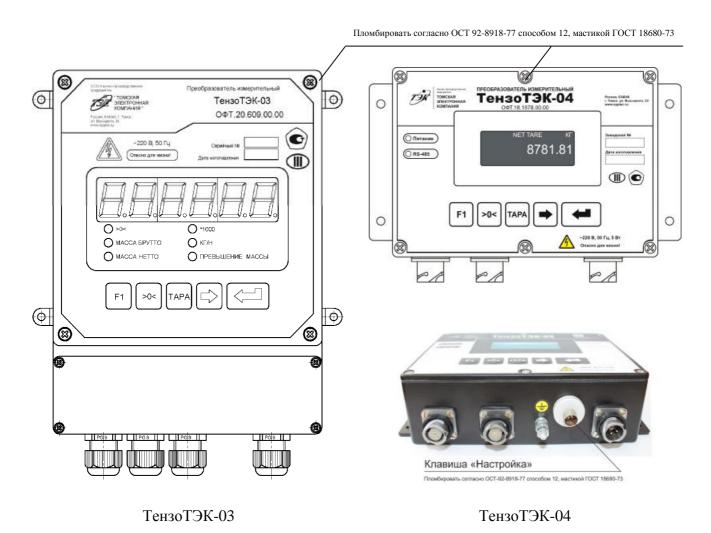


Рисунок 2 - Схема пломбировки тензопреобразователей

Идентификационные данные ПО представлены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение		
	ТензоТЭК-03	ТензоТЭК-04	
Идентификационное наименование ПО	_	_	
Номер версии (идентификационный номер) ПО	1.2	1.1	
Цифровой идентификатор ПО	отсутствует, исполняемый код недоступен		
Другие идентификационные данные (при наличии)	отсутствуют		

Уровень защищённости встроенного ПО приборов от преднамеренных и непреднамеренных изменений соответствует высокому уровню по Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2

	n		
Наименование параметра	Значение		
	ТензоТЭК-03	ТензоТЭК-04	
Класс точности по ГОСТ OIML R 76-1	III		
Значение доли предела допускаемой погрешности p _i	0,5		
Максимальное число поверочных интервалов, n _{max}	3000		
Диапазон уравновешивания тары, % от	100		
максимальной нагрузки	100		
Дискретность измерений	от 0,00001 до 1,0 кг от 0,00001 до 1,0 Н		
Количество аналоговых входов для подключения	1		
тензодатчиков			
Количество параллельно подключаемых датчиков,	4		
не более, шт.			
Схема подключения датчика	6- или 4-проводная		
Напряжение питания датчика, В	5,6	3,3	
Минимальное входное напряжение, мВ	от 0 до 16,8	от 0 до 9,9	
Минимальное и максимальное полные	от 80 до 1000		
сопротивления датчика, Ом			
Диапазон измеряемых значений рабочего	от 0 до 3,0		
коэффициента передачи (РКП) датчика, мВ/В			
Пределы допускаемой приведенной погрешности	± 0,1		
преобразования выходных сигналов в значение			
силы, %			
Диапазон рабочих температур	-30°С до 50°С		
Максимальная длина кабеля датчика, м	100		
Поперечное сечение кабеля, не менее, мм ²	0,12		
Габаритные размеры, мм, не более	235×160×72	150×210×55	
(длина×ширина×высота)	233~100~72	130^210^33	
Масса, кг, не более	1,5		
Потребляемая мощность, В А, не более	15		
Параметры электропитания от сети			
переменного тока: - напряжение, В	187242		
- частота, Гц	4951		
Веродтность безотказной работы за 2000 и		0.92	

 Вероятность безотказной работы за 2000 ч.
 0,92

 Срок службы не менее, лет
 10

Знак утверждения типа

наносится фотохимическим способом на маркировочную табличку, закрепленную на лицевой панели корпуса ТензоТЭК, и на титульный лист Руководства по эксплуатации типографским способом.

Комплектность средства измерений

Наименование	Кол.	Примечание
1 Преобразователь измерительный ТензоТЭК-ХХ	1	
2 Шнур питания с вилкой сетевой*	1	- - При поставке большого - количества ТензоТЭК по
3 Кабель подключения датчика*	1	
4 Комплект эксплуатационной документации в составе:		
- Формуляр	1	
- Руководство по эксплуатации	1	одному адресу количество
- Руководство оператора	1	документов должно быть
- Методика поверки	1	оговорено дополнительно
5 Копия свидетельства об утверждении типа средств	1	
измерений	1	
* – Определяется при заказе		

Поверка

осуществляется в соответствии с документом ОФТ.20.609.00.00 МП «Преобразователи измерительные ТензоТЭК. Методика поверки», утвержденным ФГУП «СНИИМ» 27.08.2015г. Основное поверочное оборудование — имитатор выходных сигналов тензорезисторов ИСТ-1 с диапазоном выходных сигналов (0 - 10) мВ класса точности 0,02.

Сведения о методиках (методах) измерений

содержатся в разделе 1.4 руководства по эксплуатации преобразователя.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным ТензоТЭК

- 1 ГОСТ OIML R 76-1-2011 «Весы неавтоматического действия. Метрологические и технические требования. Испытания»;
- 3 ТУ 4221-609-20885897-2015 «Преобразователи измерительные ТензоТЭК. Технические условия».

Изготовитель

Общество с ограниченной ответственностью Научно-производственное предприятие «Томская электронная компания» (ООО НПП «ТЭК»)

ИНН 7020037139

634040, Россия, г. Томск, ул. Высоцкого, 33

Тел./факс: (3822) 63-38-37/63-38-41

E-mail: npp@mail.npptec.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

630004, Новосибирск, пр. Димитрова, 4

Тел. (383) 210-08-14, факс (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Φ ГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

С.С. Голубев

М.п. « ___ » _____ 2015 г.