ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Восточно-Моховая»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Восточно-Моховая» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Полученные данные и результаты измерений могут использоваться для оперативного управления энергопотреблением на ПС 220 кВ «Восточно-Моховая» ПАО «ФСК ЕЭС».

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (далее по тексту – ТТ) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее по тексту – ТН) по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии (далее по тексту – Сч или Счетчики), вторичные измерительные цепи и технические средства приемапередачи данных;

Второй уровень — информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), систему обеспечения единого времени (СОЕВ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование;

Третий уровень – информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера Центра сбора и обработки данных (далее по тексту ЦСОД) ПАО «ФСК ЕЭС» не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ).

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени; автоматизированные рабочие места (APM) на базе персонального компьютера (далее по тексту – ПК); каналообразующую аппаратуру; средства связи и передачи данных.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

УСПД автоматически проводит сбор результатов измерений и состояния средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

Коммуникационный сервер опроса ИВК АИИС КУЭ единой национальной (общероссийской) электрической сети (далее по тексту – ЕНЭС) «Метроскоп» автоматически опрашивает УСПД ИВКЭ. Опрос УСПД выполняется с помощью выделенного канала (основной канал связи). При отказе основного канала связи опрос УСПД выполняется по резервному каналу связи, организованному на базе сотовой сети связи стандарта GSM.

По окончании опроса коммуникационный сервер автоматически производит обработку измерительной информации (умножение на коэффициенты трансформации) и передает полученные данные в базу данных (БД) сервера ИВК АИИС КУЭ ЕНЭС «Метроскоп». В сервере БД ИВК АИИС КУЭ ЕНЭС «Метроскоп» информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске. Между ЦСОД ПАО «ФСК ЕЭС» и ЦСОД филиала ПАО «ФСК ЕЭС» - МЭС Западной Сибири происходит автоматическая репликация данных по сетям единой цифровой сети связи электроэнергетики (ЕЦССЭ).

Один раз в сутки коммуникационный сервер ИВК АИИС КУЭ ЕНЭС «Метроскоп» автоматически формирует файл отчета с результатами измерений, в формате XML, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (ИАСУ КУ) ОАО «АТС» и в ОАО «СО ЕЭС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ). Устройство синхронизации системного времени обеспечивает автоматическую синхронизацию часов сервера, при превышении порога \pm 1 с происходит коррекция часов сервера. Синхронизация часов УСПД выполняется УССВ ИВКЭ, коррекция проводится при расхождении часов УСПД и УССВ на значение, превышающее \pm 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 1 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по оптоволоконной связи или по сети Ethernet, задержками в линиях связи пренебрегаем ввиду малости значений.

Ход часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии ЕНЭС «Метроскоп» (далее по тексту – СПО АИИС КУЭ ЕНЭС «Метроскоп»). СПО АИИС КУЭ ЕНЭС «Метроскоп» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные СПО АИИС КУЭ ЕНЭС «Метроскоп», установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
1	2
Идентификационное наименование ПО	СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп»
Номер версии	1.00
(идентификационный номер) ПО	100
Цифровой идентификатор ПО	D233ED6393702747769A45DE8E67B57E
Другие идентификационные данные, если	_
имеются	

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней ИК АИИС КУЭ приведен в таблице 2. Метрологические характеристики АИИС КУЭ приведены в таблице 3.

Таблица 2 – Состав 1-го и 2-го уровней ИК АИИС КУЭ

1 405	Писпетиерское	Состав 1-го и 2-го уровней ИК				
№ ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	ИВКЭ (УСПД)	
1	2	3	4	5	6	
1	ПС-220/110/35/10/6 кВ Восточно-Моховая; ВЛ-110 кВ Восточно- Моховая – Имилор №3	Ктт = 600/5 Зав. № 40231; 30123: 40191	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 435; 487; 499 Госреестр № 14205-94	A1802RALQ- P4GB-DW4 кл.т 0,2S/0,5 Зав. № 01276250 Госреестр № 31857-11	ЭКОМ-3000 зав. № 08145596 Госреестр № 17049-09	
2	ПС-220/110/35/10/6 кВ Восточно-Моховая; ВЛ-110 кВ Восточно- Моховая – Имилор №4	№ 2793-88 ТФЗМ-110Б-1ХЛ1 кил 0.5	НКФ-110-57 У1 кл.т 0,5 Ктн = (110000/√3)/(100/√3) Зав. № 423; 493; 492 Госреестр № 14205-94	A1802RALQ- P4GB-DW4 кл.т 0,2S/0,5 Зав. № 01276938 Госреестр № 31857-11	ЭКОМ-3000 зав. № 08145596 Госреестр № 17049-09	

	должение таблицы 2	3	4	5	6
_1	<u> </u>	_	· ·		0
		TB-110-20	НКФ-110-57 У1	A1802RALQ-	DICOM 2000
	ПС-220/110/35/10/6 кВ	кл.т 3	кл.т 0,5	P4GB-DW4	ЭКОМ-3000
2	Восточно-Моховая;	$K_{TT} = 400/5$	KTH =	кл.т 0,2\$/0,5	зав. №
3	ВЛ-110 кВ Восточно-	Зав. № 5649-А;	$(110000/\sqrt{3})/(100/\sqrt{3})$		08145596
	Моховая-Имилор №1	5648-B; 5649-C	Зав. № 435; 487; 499	01276945	Госреестр
		Госреестр	Госреестр	Госреестр	№ 17049-09
		№ 3189-72	№ 14205-94	№ 31857-11	
		TB-110-20	НКФ-110-57 У1	A1802RALQ-	
	ПС-220/110/35/10/6 кВ	кл.т 0,5	кл.т 0,5	P4GB-DW4	ЭКОМ-3000
	Восточно-Моховая;	KTT = 400/5	Ктн =	кл.т 0,2S/0,5	зав. №
4	ВЛ-110 кВ Восточно-		$(110000/\sqrt{3})/(100/\sqrt{3})$		08145596
	Моховая-Имилор №2	B; 5645-C	Зав. № 423; 493; 492	01276978	Госреестр
	тиоховая-итмилор мег	Госреестр	Госреестр	Госреестр	№ 17049-09
		№ 3189-72	№ 14205-94	№ 31857-11	
		TB-110-20	НКФ-110-57 У1	A1802RALQ-	
	ПС-220/110/35/10/6 кВ	кл.т 3	кл.т 0,5	P4GB-DW4	ЭКОМ-3000
		$K_{TT} = 400/5$	Ктн =	кл.т 0,2S/0,5	зав. №
5	Восточно-Моховая;	Зав. № 5645-А;	$(110000/\sqrt{3})/(100/\sqrt{3})$	Зав. №	08145596
	ВЛ-110 кВ Восточно-	5646-B; 5648-C	Зав. № 435; 487; 499	01276357	Госреестр
	Моховая –Сова I цепь	Госреестр	Госреестр	Госреестр	№ 17049-09
		№ 3189-72	№ 14205-94	№ 31857-11	
		TB-110-20	НКФ-110-57 У1	A1802RALQ-	
	ПС-220/110/35/10/6 кВ Восточно-Моховая;	кп т 3	кл.т 0,5	P4GB-DW4	ЭКОМ-3000
		$K_{TT} = 400/5$	К тн =	кл.т 0,2S/0,5	зав. №
6			$(110000/\sqrt{3})/(100/\sqrt{3})$		08145596
	ВЛ-110 кВ Восточно-	9302	Зав. № 423; 493; 492	01276386	Госреестр
	Моховая –Сова II цепь	Госреестр	Госреестр	Госреестр	№ 17049-09
		№ 3189-72	№ 14205-94	№ 31857-11	
		TB-110-20	НКФ-110-57 У1	A1802RALQ-	
	ПС-220/110/35/10/6 кВ	кл.т 3	кл.т 0,5	P4GB-DW4	ЭКОМ-3000
	Восточно-Моховая;	KTT = 600/5	Ктн =	кл.т 0,2S/0,5	зав. №
7	ВЛ-110 кВ	Зав. № 9304-А;	$(110000/\sqrt{3})/(100/\sqrt{3})$		08145596
,	Восточно-Моховая –	8182-B; 9362-C	Зав. № 423; 493; 492	01276934	Госреестр
	Слава	Госреестр	Госреестр	Госреестр	№ 17049-09
	Слава	№ 3189-72	№ 14205-94	№ 31857-11	3(2 170 17 07
		TB-110/20	J = 1 1203 /T	J = J 103 / 11	
		кл.т 3			
		$K_{TT} = 600/5$			
		Зав. № 5648; 5649	НКФ-110-57 У1	A1802RALQ-	
		· ·	кл.т 0,5	•	ЭКОМ-3000
8	HC 220/110/25/10/6 D	Госреестр	Ктн =	P4GB-DW4	
	ПС-220/110/35/10/6 кВ Восточно-Моховая; ОВ-110 кВ		$(110000/\sqrt{3})/(100/\sqrt{3})$	кл.т 0,2\$/0,5	3ab. №
		TB-110/20	Зав. № 423; 493;	Зав. №	08145596
		кл.т 0.5	492; 435; 487; 499	01277011	Госреестр
		KTT = 600/5	Госреестр	Госреестр	№ 17049-09
		Зав. № 5646	№ 14205-94	№ 31857-11	
		Госреестр			
		№ 3189-72			

1	должение таолицы 2	3	4	5	6
		ТОП-0,66		A1805RALXQ-	
		кл.т 0,5S		P4GB-DW4	ЭКОМ-3000
	КЛ 0,4 кВ Волокно-1	$K_{TT} = 40/5$		кл.т 0,5Ѕ/1,0	зав. №
9	(ПС-220/110/35/10/6 кВ	Зав. № 4054967;	-	Зав. №	08145596
	Восточно-Моховая)	4054986; 4054971		01249198	Госреестр
		Госреестр		Госреестр	№ 17049-09
		№ 47959-11		№ 31857-11	
		ТОП-0,66		A1805RALXQ-	
		кл.т 0,5S		P4GB-DW4	ЭКОМ-3000
	КЛ 0,4 кВ Волокно-2	$K_{TT} = 40/5$		кл.т 0,5Ѕ/1,0	зав. №
10	(ПС-220/110/35/10/6кВ	Зав. № 4054989;	-	Зав. №	08145596
	Восточно-Моховая)	4054966; 4054987		01249189	Госреестр
		Госреестр		Госреестр	№ 17049-09
		№ 47959-11		№ 31857-11	
		ТФЗМ 220Б-IV	НКФ-220-58	A1802RALQ-	
		кл.т 0,5	кл.т 0,5	P4GB-DW4	ЭКОМ-3000
	ПС Восточно-Моховая	KTT = 1000/5	Ктн =	THE TO 25/0.5	зав. №
11	ВЛ-220 кВ	3ap No 12720:	$(220000/\sqrt{3})/(100/\sqrt{3})$	San No	08145596
	Сургутская ГРЭС-1 - "Восточно-Моховая"	11871; 10524	Зав. № 35609; 35585;	01276249	Госреестр
		Госреестр	35528	Госреестр	№ 17049-09
		№ 26424-04	Госреестр	№ 31857-11	
			№ 14626-06		
	ПС-220/110/35/10/6 кВ Восточно-Моховая; ВЛ-35 кВ Кустовая 16-1	ТФЗМ 35А-ХЛ1	3HOM-35-65	A1802RALQ- P4GB-DW4 кл.т 0,2S/0,5	
		кл.т 0,5 Ктт = 600/5 Зав. № 70729; 70735	кл.т 0,5 Ктн =		ЭКОМ-3000
			$(35000/\sqrt{3})/(100/\sqrt{3})$		зав. №
12			Зав. № 1222345;	Зав. №	08145596
			1228700; 1465352	01276995	Госреестр
		Госреестр	Госреестр	Госреестр	№ 17049-09
		№ 26418-04	№ 912-70	№ 31857-11	
			3HOM-35		
			кл.т 0,5		
			Ктн =		
			$(35000/\sqrt{3})/(100/\sqrt{3})$		
		ТФЗМ 35А-ХЛ1	Зав. № 1191327	A1802RALQ-	
	ПС 220/110/25/10/6 D	кл.т 0,5	Госреестр	P4GB-DW4	ЭКОМ-3000
	ПС-220/110/35/10/6 кВ Восточно-Моховая; ВЛ-35 кВ Кустовая 16-2	$K_{TT} = 300/5$	№ 912-54	кл.т 0,2S/0,5	зав. №
13		Зав. № 71404;	3HOM-35-65	Зав. №	08145596
		71393	кл.т 0,5	01276193 Госреестр	Госреестр
		Госреестр	Ктн =		№ 17049-09
		№ 26418-04	$(35000/\sqrt{3})/(100/\sqrt{3})$	№ 31857-11	
			Зав. № 1186913;		
			1191504		
			Госреестр		
			№ 912-70		

1	2	3	4	5	6
14	ПС-220/110/35/10/6 кВ Восточно-Моховая; ВЛ-35 кВ Ульт-Ягун-1	ТФН-35М кл.т 0,5 Ктт = 300/5 Зав. № 15855; 14030 Госреестр № 3690-73	3HOM-35-65 кл.т 0,5 Ктн = (35000/√3)/(100/√3) Зав. № 1222345; 1228700; 1465352 Госреестр № 912-70	A1802RALQ- P4GB-DW4 кл.т 0,2S/0,5 Зав. № 01277000 Госреестр № 31857-11	ЭКОМ-3000 зав. № 08145596 Госреестр № 17049-09
15	ПС-220/110/35/10/6 кВ Восточно-Моховая; ВЛ-35 кВ Ульт-Ягун-2	ТФЗМ-35А-У1 кл.т 0,5 Ктт = 200/5 Зав. № 32151; 32146 Госреестр № 26417-04	3HOM-35 кл.т 0,5 Ктн = (35000/√3)/(100/√3) Зав. № 1191327 Госреестр № 912-54 ЗНОМ-35-65 кл.т 0,5 Ктн = (35000/√3)/(100/√3) Зав. № 1186913; 1191504 Госреестр № 912-70	A1802RALQ- P4GB-DW4 кл.т 0,2S/0,5 Зав. № 01279695 Госреестр № 31857-11	ЭКОМ-3000 зав. № 08145596 Госреестр № 17049-09

Таблица 3 - Метрологические характеристики ИК АИИС КУЭ

•		Пределы допускаемой относительной погрешности ИК при				
		измерении активной электрической энергии в рабочих				
Номер ИК	cosφ	условиях эксплуатации АИИС КУЭ (d), %				
		$d_{1(2)\%}$,	$d_{5\%},$	$d_{20\%},$	d _{100 %} ,	
		$I_{1(2)\%} \mathfrak{L} I_{_{M3M}} < I_{_{5} \%}$	I_{5} %£ $I_{изм}$ < I_{20} %	$I_{20} {}_{\%} \pounds I_{_{H3M}} \!\! < \!\! I_{100\%}$	I_{100} %£ $I_{изм}$ £ $I_{120\%}$	
1	2	3	4	5	6	
	1,0	-	±1,9	±1,2	±1,0	
1 2 4 11 15	0,9	-	±2,4	±1,4	±1,2	
1, 2, 4, 11 – 15 (Сч. 0,2S; ТТ 0,5; ТН 0,5)	0,8	-	±2,9	±1,7	±1,4	
(6 1. 0,25, 11 0,5, 111 0,5)	0,7	-	±3,6	±2,0	±1,6	
	0,5	-	±5,5	±3,0	±2,3	
	1,0	-	±0,9	±0,9	±0,9	
2.5.0	0,9	-	±0,9	±0,9	±0,9	
3, 5 – 8 (Сч. 0,2S; ТТ 3; ТН 0,5)	0,8	-	±1,0	±1,0	±1,0	
(C4. 0,25, 11 5, 111 0,5)	0,7	-	±1,2	±1,1	±1,1	
	0,5	-	±1,5	±1,4	±1,4	
	1,0	±2,3	±1,5	±1,4	±1,4	
0.10	0,9	±2,7	±1,7	±1,5	±1,5	
9, 10 (Сч. 0,5S; TT 0,5S)	0,8	±3,2	±2,0	±1,6	±1,6	
(01.0,55, 110,55)	0,7	±3,8	±2,3	±1,8	±1,8	
	0,5	±5,6	±3,2	±2,3	±2,3	

Посторы в продолжение также в продолжение в предолжение в						
		Пределы допускаемой относительной погрешности ИК при				
		измерении реактивной электрической энергии в рабочих				
Номер ИК	cosφ	условиях эксплуатации АИИС КУЭ (d), %				
		$d_{1(2)\%}$,	$d_{5\%},$	$d_{20\%},$	d _{100 %} ,	
		$I_{1(2)\%} \mathfrak{E} I_{_{H3M}} < I_{_{5} \%}$	$I_{5\%}$ £ $I_{_{13M}}$ < $I_{20\%}$	$I_{20} \% \mathcal{E} I_{_{\text{ИЗМ}}} \!\! < \!\! I_{100\%}$		
1	2	3	4	5	6	
	0,9	-	±6,5	±3,6	±2,7	
1, 2, 4, 11 – 15	0,8	-	±4,5	±2,5	±2,0	
(Сч. 0,5; ТТ 0,5; ТН 0,5)	0,7	-	±3,6	±2,1	±1,7	
	0,5	-	±2,8	±1,7	±1,4	
	0,9	-	±2,2	±1,8	±1,7	
3, 5-8	0,8	-	±1,8	±1,4	±1,4	
(Сч. 0,5; ТТ 3; ТН 0,5)	0,7	-	±1,6	±1,3	±1,3	
	0,5	-	±1,5	±1,2	±1,2	
	0,9	±12,0	±4,6	±2,9	±2,8	
9, 10	0,8	±8,9	±3,6	±2,4	±2,3	
(Сч. 1,0; ТТ 0,5Ѕ)	0,7	±7,6	±3,2	±2,2	±2,2	
	0,5	±6,4	±2,8	±2,1	±2,0	

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$;
- 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
 - 3 Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения от 0,99·Uн до 1,01·Uн;
- диапазон силы тока от 0,01· Iн до 1,2·Iн;
- температура окружающего воздуха: ТТ и TH от минус 40 до 50 °C; счетчиков -от 18 до 25 °C; УСПД от 10 до 30 °C; ИВК от 10 до 30 °C;
 - частота (50 ± 0.15) Гц.
 - 4 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от 0,9·Uн1 до 1,1·Uн1; диапазон силы первичного тока от 0,01·Iн1 до 1,2·Iн1;
 - частота (50 ± 0.4) Гц;
 - температура окружающего воздуха от минус 40 до 50 °C.

Для счетчиков электроэнергии:

- параметры сети: диапазон вторичного напряжения от $0.8 \cdot \text{U} + 2$ до $1.15 \cdot \text{U} + 2$; диапазон силы вторичного тока от $0.01 \cdot \text{I} + 2$ до $2 \cdot \text{I} + 2$;
 - частота (50 ± 0.4) Гц;
 - температура окружающего воздуха от 10 до 30 °C.
- 5 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблипе 2.

6 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2 – активная, реактивная.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчики электроэнергии «Альфа A1800» среднее время наработки на отказ не менее 120000 часов;
- УСПД среднее время наработки на отказ не менее 75 000 часов, среднее время восстановления работоспособности 1 час.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчиков и УСПД фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция шкалы времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчиков электроэнергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД.
- наличие защиты на программном уровне:
 - пароль на счетчиках электроэнергии;
 - пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в:

- счетчиках электроэнергии (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- электросчетчики тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет;
- ИВКЭ суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 5 лет.
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 3,5 лет.

Знак утверждения типа

наносится на титульный лист Паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Кол-во, шт.
1	2	3
1 Трансформатор тока	ТФЗМ-110Б-1ХЛ1	5
2 Трансформатор тока	ТФЗМ-110Б-ІУ1	1
3 Трансформатор тока	TB-110-20	15
4 Трансформатор тока	TB-110/20	3
5 Трансформатор тока	ТОП-0,66	6
6 Трансформатор тока	ТФЗМ-220Б-IV	3
7 Трансформатор тока	ТФЗМ 35А-ХЛ1	4
8 Трансформатор тока	ТФН-35М	2
9 Трансформатор тока	ТФ3М-35А-У1	2
10 Трансформатор напряжения	НКФ110-57-У1	6
11 Трансформатор напряжения	НКФ-220-58У1	3
12 Трансформатор напряжения	3HOM-35-65	5
13 Трансформатор напряжения	3HOM-35	1
14 Счетчик электрической энергии	A1802RALQ-P4GB-DW4	13
многофункциональный	A1802KALQ-140B-DW4	13
15 Счетчик электрической энергии	A1805RALXQ-P4GB-DW-4	2
многофункциональный	A1003KALAQ-140D-DW-4	2
16 Устройство сбора и передачи данных	ЭКОМ-3000	1
17 Методика поверки	РТ-МП-2686-500-2015	1
18 Паспорт – формуляр	АУВП.411711.ФСК.012.42.ПС-ФО	1

Поверка

осуществляется по документу РТ-МП-2686-500-2015 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Восточно-Моховая». Методика поверки», утвержденному ФБУ «Ростест-Москва» 23.10.2015 г.

Знак поверки, в виде оттиска поверительного клейма, наносится на свидетельство о поверке.

Перечень основных средств поверки:

- для трансформаторов тока по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- для счетчиков электроэнергии «Альфа A1800» по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.4111152.018 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г. и документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Дополнение к методике поверки ДЯИМ.411152.018 МП, утвержденному в 2012 г.
- для УСПД ЭКОМ-3000 в соответствии с методикой «ГСИ. Комплекс программнотехнический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459.003 МП», утвержденной ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:

- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- средства измерений для проверки нагрузки на вторичные цепи ТТ и ТН и падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком по МИ 3000-2006.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Восточно-Моховая». Свидетельство об аттестации методики (методов) измерений 01.00252/336-2015 от 30.09.2015 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 220 кВ «Восточно-Моховая»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».
- 3. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Изготовитель

Публичное акционерное общество «Федеральная сетевая компания Единой энергетической системы» (ПАО «ФСК ЕЭС»)

ИНН 4716016979

Юридический адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Тел.: +7 (495) 710-93-33; Факс: +7 (495) 710-96-55

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ» (ООО «ИЦ ЭАК»)

Юридический адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел.: +7 (495) 620-08-38; Факс: +7 (495) 620-08-48

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Тел.: +7 (495) 544-00-00

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев