ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы мульти-измерительные МИК-01

Назначение средства измерений

Комплексы мульти-измерительные МИК-01 (далее по тексту комплексы) предназначены для измерений массовой концентрации пыли при контроле превышения предельно-допустимых значений массовой концентрации пыли и объемной доли метана в воздухе рабочей зоны.

Описание средства измерений

Принцип действия комплекса по каналу измерения массовой концентрации пыли – оптический и основан на регистрации рассеянного ИК – излучения на частицах, свободно попадающих в освещаемое пространство измерительной камеры. Измерительная камера цилиндрического сечения, является частью корпуса, выполнена в виде сквозного отверстия, и расположена в его центральной части. В качестве источника излучения используется ИКсветодиод мощностью 5 мВт с длиной волны 980 нм. Регистрация рассеянного излучения осуществляется кремниевым фотоприемником. Источник излучения расположен под углом 120 градусов по отношению к фотоприемнику. Прямое излучение попадает в световую ловушку, в которой поглощается. Интегральные значения интенсивности рассеянного излучения пропорциональны массовой концентрации аэрозольных частиц.

Принцип действия комплекса по каналу измерения объемной доли метана основан на избирательном поглощении инфракрасного излучения молекулами углеводородов в области длин волн 3,3-3,4 мкм. Инфракрасное излучение светодиода проходит через измерительную газовую кювету диффузионного типа и попадает на 2 фотоприемника, один из которых регистрирует только излучение в диапазоне длин волн 3,3-3,4 мкм, другой в диапазоне длин волн 3.5-3.7мкм. Исследуемый газ, находящийся в кювете поглощает излучение рабочей длины волны и не влияет на излучение опорной длины волны. Амплитуда рабочего сигнала фотоприемника изменяется при изменении концентрации.

Для очистки оптических элементов измеритель оснащен штуцерами для подачи чистого воздуха.

Комплексы мульти-измерительные МИК-01 состоят из одного блока с цифровой индикацией результатов измерений и имеют цифровой (RS-485) и аналоговые (0,4-2 В) выходы для выдачи измеренного значения массовой концентрации аэрозольных частиц и объемной доли метана.

По способу установки на месте эксплуатации являются стационарными, по способу выдачи информации— комбинированные; по видам источников питания— с электрическим питанием; по степени автоматизации— автоматизированные; по режиму работы— непрерывного действия.

Исполнение комплексов (уровень и вид взрывозащиты) по ГОСТ 30852.0, ГОСТ 30852.10, ГОСТ 31610.28, ГОСТ 24754 соответствует РО Ex іа ор із І. Степень защиты корпуса по ГОСТ 14254-96 не ниже ІР54.

Для предотвращения несанкционированного доступа корпус комплекса пломбируется.

Знак поверки наносится в виде оттиска клейма в свидетельство о поверке.

Внешний вид измерителя и схема пломбировки корпуса от несанкционированного доступа представлены на рисунке 1.

Рисунок 1 – Внешний вид и схема пломбировки корпуса от несанкционированного доступа комплекса МИК-01

Программное обеспечение

Комплексы имеют встроенное программное обеспечение далее (ПО), разработанное фирмой-изготовителем специально для решения задач измерения массовой концентрации пыли при контроле превышения предельно-допустимых значений массовой концентрации пыли и объемной доли метана в воздухе рабочей зоны при аварийных ситуациях. Встроенное ПО измерителя состоит из двух частей - основной (программы управления измерением) и дополнительной (подпрограмма тестирования цифрового выходного сигнала) и имеет древовидную структуру. Программное обеспечение используется для отображения идентификационных данных ПО и результатов измерений, настройки параметров измерителя, выполнения измерений, передачи результатов измерений на внешние устройства.

К метрологически значимой части относится все ПО. Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.77-2014. Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Наименование программного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (иден- тификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вы- числения цифрового идентификатора программного обеспечения
Программа управления измерением	MIK.bin	Ver.1.x	0xAD452368	CRC32
Подпрограмма тестирования цифрового выходного сигнала	MIK_Test.bin	Ver.1.x	0xHC664845	CRC32

Примечания:

- 1). Знак "х" в номере версии ПО обозначает незначительные изменения, не влияющие на метрологические характеристики измерителей;
- 2). Контрольная сумма, указанная в таблице, относится только к файлу прошивки версии 1.01 При нормировании метрологических характеристик учтено влияние программного обеспечения.

Метрологические и технические характеристики

Таблица 2

Параметр	Значение
Диапазон измерений массовой концентрации пыли, мг/м ³	0 - 2000
Диапазон измерений объемной доли метана, %	0 - 100
Пределы допускаемой приведенной погрешности по каналу массовой	
концентрации пыли в диапазоне измерения от 0 до 100 мг/м ³ , %	±15
Пределы допускаемой относительной погрешности по каналу массовой	
концентрации пыли в диапазоне измерения св. 100 до 1500 мг/м ³ , %	±15
Пределы допускаемой относительной погрешности по каналу массовой	
концентрации пыли в диапазоне измерения св. 1500 до 2000 мг/м ³ , %	± 20
Пределы допускаемой основной абсолютной погрешности измерений по	
каналу объемной доли метана	
в диапазоне измерений от 0 до 2 объемная доля, %	$\pm 0,1$
Пределы допускаемой основной относительной погрешности измерений по	
каналу объемной доли метана	
в диапазоне измерений св. 2 до 5 объемная доля, %	±5
Пределы допускаемой основной относительной погрешности измерения по	
каналу объемной доли метана	
в диапазоне измерений св. 5 до 100 объемная доля, %	±10
Пределы допускаемой дополнительной погрешности измерения от влияния	
изменения температуры окружающей и анализируемой сред в диапазоне	
эксплуатации относительно условий, при которых определялась основная	
погрешность, по измерительному каналу объемной доли метана:	
- абсолютной, % (в диапазоне измерений от 0 до 2 %)	$\pm 0,2$
- относительной, % (в диапазоне измерений св 2 до 100 %)	±10

Параметр	Значение
Пределы допускаемой дополнительной погрешности измерения от влияния	
изменения давления окружающей и анализируемой сред в диапазоне	
эксплуатации относительно условий, при которых определялась основная	
погрешность, по измерительному каналу объемной доли метана:	
- абсолютной, % (в диапазоне измерений от 0 до 2 %)	$\pm 0,2$
- относительной, % (в диапазоне измерений св. 2 до 100 %)	±30
Пределы допускаемой дополнительной погрешности измерения от влияния	
изменения влажности окружающей и анализируемой сред в диапазоне	
эксплуатации относительно условий, при которых определялась основная	
погрешность, по измерительному каналу объемной доли метана:	
- абсолютной, % (в диапазоне измерений от 0 до 2 %)	$\pm 0,2$
- относительной, % (в диапазоне измерений св. 2 до 100 %)	±15

Примечание. Метрологические характеристики установлены для тестового аэрозоля.

1. Габаритные размеры, ДхШхВ, мм	226x203x83;
2. Масса, кг	3;
3. Электрическое питание от сети постоянного тока, В	12;
4. Потребляемая мощность, В·А	0,5;

5. Условия эксплуатации:

диапазон температуры окружающей среды	от минус 10 до плюс 50° C;
- диапазон относительной влажности	от 30 до 98 % (без
	капельной влаги);
. диапазон атмосферного давления	от 84 до 106,7 кПа;
8. Средняя наработка на отказ, ч	10000;
9. Средний срок службы, лет	5.

Знак утверждения типа

наносится на лицевую панель измерителей и титульный лист Руководства по эксплуатации в верхнем правом углу методом компьютерной графики.

Комплектность средства измерений

Комплектность поставки измерителей приведена в таблице 3.

Таблица 3

No	Наименование	Количество
п/п		
1.	Комплекс мульти-измерительный МИК-01	1 шт.
2.	Градуировочная и транспортная заглушка	2 шт.
3.	Руководство по эксплуатации	1 экз.
4.	Методика поверки МП 06-010-2015	1 экз.
5.	Настроечный пульт	По заказу
6.	Копия сертификата соответствия ТР ТС 012/2011	1 экз.

Поверка

осуществляется по документу МП 06-010-2015 «Комплекс мульти-измерительный МИК-01 Методика поверки», утвержденному Φ БУ "Кемеровский ЦСМ" 05 октября 2015 г.

Основные средства поверки:

- рабочие эталоны единицы массовой концентрации частиц в аэродисперсных средах в соответствии с ГОСТ Р 8.606-2012 «ГСИ. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов». Относительная погрешность не более ± 10 %;
 - ГСО-ПГС 10530-2014 состава метан воздух;
 - ГСО-ПГС 10532-2014 состава метан азот.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе "Комплексы мульти-измерительные "МИК-01". Руководство по эксплуатации".

Нормативные и технические документы, устанавливающие требования к комплексам мульти-измерительным МИК-01

- 1. ГОСТ 8.606-2012 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов».
- 2. ГОСТ 8.578-2008 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».
- 3. «Правила безопасности в угольных шахтах» утв. приказом Ростехнадзора от 19.11.2013 №550».
 - 4. Технические условия ТУ 4215-001-64369286-2015.

Изготовитель

ООО «ЭлектроТехноСервис»

ИНН 5401333736

Юр. адрес 630089, г. Новосибирск, ул. Кошурникова, 53/1

Тел. (3842) 555-100

Адрес представительства в Кузбассе:

650036, г. Кемерово, ул.Промышленный проезд, д.32

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Кемеровской области» (ФБУ «Кемеровский ЦСМ») 650991, Кемеровская область, г. Кемерово, ул. Дворцовая, д. 2

Тел.: (384-2) 36-43-89; факс: (384-2) 75-88-66

E-mail: <u>kemcsm@kuzbass.net</u> Internet: www.kemcsm.ru

Аттестат аккредитации ФБУ «Кемеровский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30063-12 от 13.11.2012 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2015 г.