ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НПП «Нефтехимия»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НПП «Нефтехимия» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных ЭКОМ-3000 (далее – УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее – УСВ) встроенное в УСПД.

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее – ПО) ПО «Энергосфера».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем – третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей

информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройством синхронизации времени встроенное в УСПД, на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов GPS-приемника не более ± 1 с. Устройство синхронизации времени обеспечивает автоматическую коррекцию часов УСПД. Коррекция часов УСПД проводится при расхождении часов УСПД и времени приемника более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов УСПД и времени приемника не более ± 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПО «Энергосфера» версии не ниже 7.0, в состав которого входят модули, указанные в таблице 1. ПО ПО «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПО «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом Π O.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

ый		Измерительные компоненты				_	Метрологические характеристики ИК	
Порядковый номер	Наименование объекта и номер ИК	TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-1 6 кВ, II с.ш. 6 кВ, яч.212	АВ12 Кл. т. 0,2S 1500/5 Зав. № 2012/1000229855; Зав. № 2012/1000275076; Зав. № 2012/1000230889	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06484 05; Зав. № 12/06484 07; Зав. № 12/06484 08	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0807126132	ЭКОМ-3000 Зав. № 05113329	активная	±0,8 ±1,8	±1,6 ±2,8
2	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-1 6 кВ, IV с.ш. 6 кВ, яч.407	АВ12 Кл. т. 0,2S 1500/5 Зав. № 2012/1000229832; Зав. № 2012/1000229833; Зав. № 2012/1000262622	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06483 01; Зав. № 12/06483 02; Зав. № 12/06483 03	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0804120817	ЭКОМ-3000 Зав. № 05113329	активная	±0,8 ±1,8	±1,6 ±2,8

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
3	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-1 6 кВ, III с.ш. 6 кВ, яч.303	AB12 Kл. т. 0,2S 1500/5 Зав. № 2012/1000230891; Зав. № 2012/1000230890; Зав. № 2012/1000230892	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06484 09; Зав. № 12/06484 06; Зав. № 12/06484 01	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0804120665	ЭКОМ-3000 Зав. № 05113329	активная реактивная	±0,8 ±1,8	±1,6 ±2,8
4	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-1 6 кВ, І с.ш. 6 кВ, яч.115	АВ12 Кл. т. 0,2S 1500/5 Зав. № 2012/1000231240; Зав. № 2012/1000231242; Зав. № 2012/1000231241	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06484 02; Зав. № 12/06484 03; Зав. № 12/06484 04	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0805126821	ЭКОМ-3000 Зав. № 05113329	активная	±0,8 ±1,8	±1,6 ±2,8
5	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-2 6 кВ, V с.ш. 6 кВ, яч.513	АВ12 Кл. т. 0,2S 600/5 Зав. № 2012-1000232348; Зав. № 2012-1000232350; Зав. № 2012-1000232349	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06772 01; Зав. № 12/06772 02; Зав. № 12/06772 03	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0803122787	ЭКОМ-3000 Зав. № 05113329	активная реактивная	±0,8 ±1,8	±1,6 ±2,8

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
6	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-2 6 кВ, VI с.ш. 6 кВ, яч.611	АВ12 Кл. т. 0,2S 200/5 Зав. № 2012-1000233189; Зав. № 2012-1000233196; Зав. № 2012-1000233180	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06780 01; Зав. № 12/06780 02; Зав. № 12/06780 03	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0805120178	ЭКОМ-3000 Зав. № 05113329	активная реактивная	±0,8 ±1,8	±1,6 ±2,8
7	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-2 6 кВ, VII с.ш. 6 кВ, яч.711	АВ12 Кл. т. 0,2S 600/5 Зав. № 2012-1000232345; Зав. № 2012-1000232346; Зав. № 2012-1000232347	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06778 01; Зав. № 12/06778 02; Зав. № 12/06778 03	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0803122438	ЭКОМ-3000 Зав. № 05113329	активная	±0,8 ±1,8	±1,6 ±2,8
8	ПС 220/6 кВ «Крекинг №557», ГПП-2, РУ-2 6 кВ, VIII с.ш. 6 кВ, яч.809	АВ12 Кл. т. 0,2S 600/5 Зав. № 2012-1000231413; Зав. № 2012-1000231414; Зав. № 2012-1000232342	4MR12 ZEK Кл. т. 0,5 6000:√3/100:√3 Зав. № 12/06776 02; Зав. № 12/06777 03; Зав. № 12/06487 06	СЭТ- 4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0804122383	ЭКОМ-3000 Зав. № 05113329	активная	±0,8 ±1,8	±1,6 ±2,8

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
9	РП-11 6 кВ, РУ-6 кВ, I с.ш. 6 кВ, яч.13	ТЛО-10 Кл. т. 0,5 100/5 Зав. № 7596; Зав. № 7598; Зав. № 7597	ЗНОЛПМИ-6 Кл. т. 0,5 6000:√3/100:√3 Зав. № 3000391; Зав. № 3000343; Зав. № 3000340	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1,0 Зав. № 0822125745	ЭКОМ-3000 Зав. № 05113329	активная	±1,2 ±2,8	±3,3 ±5,7
10	РП-11 6 кВ, РУ-6 кВ, II с.ш. 6 кВ, яч.10	ТЛО-10 Кл. т. 0,5 100/5 Зав. № 9613; Зав. № 7611; Зав. № 7605	ЗНОЛПМИ-6 Кл. т. 0,5 6000:√3/100:√3 Зав. № 3000341; Зав. № 3000342; Зав. № 3000386	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1,0 Зав. № 0805126846	ЭКОМ-3000 Зав. № 05113329	активная	±1,2 ±2,8	±3,3 ±5,7

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98-1.02) Uном; ток (1.0-1.2) Іном, частота (50 ± 0.15) Γ ц; \cos ј = 0.9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 ± 4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9-1.1) Uн $_1$; диапазон силы первичного тока (0.02-1.2) Ін $_1$; коэффициент мощности соsj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9-1.1) UH₂; диапазон силы вторичного тока (0.01-1.2) IH₂; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 \pm 4) кПа;
 - температура окружающего воздуха: от минус 40 до плюс 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 \pm 5) %;
 - атмосферное давление (100 \pm 4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j=0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 10 от 0 до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4ТМ.03М (Госреестр № 36697-08) среднее время наработки на отказ не менее T=140000 ч, среднее время восстановления работоспособности tв = 2 ч;
- электросчётчик СЭТ-4ТМ.03М.01 (Госреестр № 36697-12) среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t = 2 ч;
- УСПД ЭКОМ-3000 среднее время наработки на отказ не менее T=75000 ч, среднее время восстановления работоспособности t=2 ч;
- сервер среднее время наработки на отказ не менее $T=70000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «НПП «Нефтехимия» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.
1	2	3	4
Трансформатор тока	AB12	41566-09	24
Трансформатор тока	ТЛО-10	25433-08	6
Трансформатор напряжения	4MR12 ZEK	61300-15	24
Трансформатор напряжения	ЗНОЛПМИ-6	46738-11	6
Счётчик электрической		26607.00	0
энергии многофункциональный	СЭТ-4ТМ.03М	36697-08	8
Счётчик электрической	СЭТ-4ТМ.03М.01	36697-12	1
энергии многофункциональный	C51-41W1.05W1.01	30097-12	1
Счётчик электрической			
энергии	СЭТ-4ТМ.03М.01	36697-08	1
многофункциональный			
Устройство сбора и передачи	ЭКОМ-3000	17049-09	1
данных		1,0.505	-
Программное обеспечение	ПО «Энергосфера»	-	1
Методика поверки	-		1
Паспорт-Формуляр		-	1
Руководство по эксплуатации	-	-	1

Поверка

осуществляется по документу МП 62685-15 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НПП «Нефтехимия». Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в сентябре 2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«ГСИ.}$ Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;

- счетчиков СЭТ-4ТМ.03М.01 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД ЭКОМ-3000 по документу «ГСИ. Комплекс программно-технический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ ООО «НПП «Нефтехимия» , аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «НПП «Нефтехимия»

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Закрытое акционерное общество «Росэнергосервис» (ЗАО «Росэнергосервис») ИНН 3328489050

Юридический (почтовый) адрес: 600017, Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Тел.: (4922) 44-87-06; Факс: (4922) 33-44-86

Заявитель

Общество с ограниченной ответственностью «Тест-Энерго» (ООО «Тест-Энерго»)

Юридический адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3 Почтовый адрес: 119119, г. Москва, Ленинский пр-т, 42, 25-35

E-mail: <u>info@t-energo.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Ваместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

М.п. «___»____2015 г.