ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Беко»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Беко» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных СИКОН С70 (далее – УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее – УСВ) УССВ-2.

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее – ПО) ПО «АльфаЦЕНТР».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные

организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройством синхронизации времени, на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ не более \pm 1 с. Устройство синхронизации времени обеспечивает автоматическую коррекцию часов сервера БД и УСПД. Коррекция часов УСПД проводится при расхождении часов УСПД и времени приемника более чем на \pm 1 с, пределы допускаемой абсолютной погрешности синхронизации часов УСПД и времени приемника не более \pm 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 2 с. Погрешность часов компонентов АИИС КУЭ не превышает \pm 5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПО «АльфаЦЕНТР» версии не ниже 12, в состав которого входят модули, указанные в таблице 1. ПО ПО «АльфаЦЕНТР» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПО «АльфаЦЕНТР».

Таблица 1 – Метрологические значимые модули ПО

Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПО «АльфаЦЕНТР»		
	Библиотека ac_metrology.dll		
Номер версии (идентификационный номер) ПО	12.01		
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

Комплексы измерительно-вычислительные для учета электрической энергии «АльфаЦЕНТР», в состав которых входит ПО «АльфаЦЕНТР», внесены в Госреестр СИ РФ N_2 44595-10.

Предел допускаемой дополнительной абсолютной погрешности ИВК «АльфаЦЕНТР», получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов ИВК «АльфаЦЕНТР».

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

ıй	·	Измерительные компоненты					Метрологические характеристики ИК	
Порядковый номер	Наименование объекта и номер ИК	TT	ТН	Счётчик	УСПД	Вид электроэ- нергии	Основная погрешность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ПС 110/10 кВ «Октябрьская», ЗРУ-10 кВ, І с.ш. 10 кВ, яч. ф.1004	ТЛК 10-5 Кл. т. 0,5 600/5 Зав. № 16582; Зав. № 16581	3HOЛ.06 10У3 Кл. т. 0,5 10000:√3/100:√3 Зав. № 12447; Зав. № 13006; Зав. № 11035	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0808151847	СИКОН С70 Зав. № 07591	активная	±1,1 ±2,7	±3,0 ±4,8
2	ПС 110/10 кВ «Октябрьская», ЗРУ-10 кВ, III с.ш. 10 кВ, яч. ф.1020	ТЛК 10-5 Кл. т. 0,5 800/5 Зав. № 20379; Зав. № 20428	3HOЛ.06 10У3 Кл. т. 0,5 10000:√3/100:√3 Зав. № 12535; Зав. № 16682; Зав. № 121199	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0808151917	СИКОН С70 Зав. № 07591	активная	±1,1 ±2,7	±3,0 ±4,8
3	ПС 110/10 кВ «Октябрьская», ЗРУ-10 кВ, II с.ш. 10 кВ, яч. ф.1013	ТЛК 10-5 Кл. т. 0,5 600/5 Зав. № 16592; Зав. № 15264	3НОЛ.06 10У3 Кл. т. 0,5 10000:√3/100:√3 Зав. № 11931; Зав. № 11633; Зав. № 12533	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0808151980	СИКОН С70 Зав. № 07591	активная	±1,1 ±2,7	±3,0 ±4,8

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
4	ПС 110/10 кВ «Октябрьская», ЗРУ-10 кВ, IV с.ш. 10 кВ, яч. ф.1030	ТЛК 10-5 Кл. т. 0,5 800/5 Зав. № 17991; Зав. № 10873	3НОЛ.06 10У3 Кл. т. 0,5 10000:√3/100:√3 Зав. № 11078; Зав. № 11870; Зав. № 12043	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0808151945	СИКОН С70 Зав. № 07591	активная	±1,1 ±2,7	±3,0 ±4,8

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0,98 1,02) Uном; ток (1,0 1,2) Іном, частота (50 \pm 0,15) Γ ц; соѕj = 0,9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9-1.1) Uн₁; диапазон силы первичного тока (0.05-1.2) Ін₁; коэффициент мощности соsj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9-1.1) UH₂; диапазон силы вторичного тока (0.01-1.2) IH₂; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление $(100 \pm 4) \text{ кПа};$
 - температура окружающего воздуха:
 - от минус 40 до плюс 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 4 от 0 до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее $T=165000~\rm y$, среднее время восстановления работоспособности $t = 2~\rm y$;
- УСПД СИКОН С70 среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t = 2 ч;
- сервер среднее время наработки на отказ не менее $T=70000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «Беко» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.
1	2	3	4
Трансформатор тока	ТЛК 10-5	9143-06	6
Трансформатор тока	ТЛК 10-5	9143-01	2
Трансформатор напряжения	3НОЛ.06 10У3	3344-04	12
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-12	4
Устройство сбора и передачи данных	СИКОН С70	28822-05	1
Программное обеспечение	ПО «АльфаЦЕНТР»	-	1
Методика поверки	-	-	1
Паспорт-Формуляр	-	-	1
Руководство по эксплуатации	-	-	1

Поверка

осуществляется по документу МП 62686-15 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Беко». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в сентябре 2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД СИКОН С70 по документу «Контроллеры сетевые индустриальный СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2005 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Знак поверки наносится на свидетельство о поверке, оформленное в соответствии с Приказом Минпромторга России № 1815 от 2 июля 2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ ООО «Беко», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Беко»

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Закрытое акционерное общество «Росэнергосервис»

(ЗАО «Росэнергосервис»)

ИНН 3328489050

Юридический (почтовый) адрес: 600017, Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Тел.: (4922) 44-87-06; Факс: (4922) 33-44-86

Заявитель

Общество с ограниченной ответственностью «Тест-Энерго»

(ООО «Тест-Энерго»)

Юридический адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3 Почтовый адрес: 119119, г. Москва, Ленинский пр-т, 42, 25-35

E-mail: info@t-energo.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

	олу	