ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Магнитометр трехкомпонентный ТКМ

Назначение средства измерений

Магнитометр трехкомпонентный ТКМ (далее - ТКМ) предназначен для измерения трех ортогональных составляющих вектора магнитной индукции в месте размещения первичного измерительного преобразователя.

Описание средства измерений

Принцип действия ТКМ основан на методе измерения составляющих вектора индукции магнитного поля с помощью трех ферромодуляционных преобразователей, расположенных в виде пространственного креста. Каждый измерительный канал состоит из первичного и вторичного измерительного преобразователя. Сбор и обработка данных от вторичного измерительного преобразователя осуществляется микроконтроллером ТКМ. Управление микроконтроллером осуществляется с помощью программного обеспечения, установленного на ПЭВМ, по интерфейсу Ethernet.

В состав ТКМ входят следующие составные части:

первичный измерительный преобразователь, преобразующий три измеренных составляющих вектора магнитной индукции в электрические напряжения, представляет собой три технологически ортогональных ферромодуляционных преобразователя, в каждом из которых имеется четыре обмотки: возбуждения, индикаторная, обратной связи и эталонная;

вторичный измерительный преобразователь, имеющий в составе аналого-цифровой преобразователь и преобразующий электрическое напряжение в числовой эквивалент (кодовый сигнал);

преобразователь интерфейсов – модуль, преобразующий выходные данные вторичного измерительного преобразователя для передачи по стандартному интерфейсу Ethernet;

блок питания – источник постоянного напряжения, преобразующий используемое напряжение питания (220 В, 50 Гц) в постоянное напряжение 48 В;

программное обеспечение, установленное на ПЭВМ типа ноутбук LENOVO B50-45, предназначенное для представления информации о значениях вектора магнитной индукции.

Первичный измерительный преобразователь вместе с вторичным измерительным преобразователем образуют три измерительных канала магнитной индукции, на выходе каждого из которых кодовый сигнал, соответствующий значению составляющей проекции вектора магнитной индукции. Выходные сигналы передаются в ПЭВМ, где в соответствии с таблицами калибровки преобразуются в значения составляющих магнитной индукции («значения», мкТл).

Каждый измерительный канал снабжен встроенным эталоном магнитной индукции, предназначенным для проведения контроля работоспособности и состоящим из эталонной обмотки и эталонного источника тока.

На рисунке 1 приведен общий вид магнитометра трехкомпонентного ТКМ.

На рисунке 2 представлен вид задней панели ТКМ со схемой пломбировки от несанкционированного доступа и вид первичного измерительного преобразователя.

Знак поверки наносится на свидетельство о поверке.

Рисунок 1 – Общий вид ТКМ

Рисунок 2 – Вид задней панели ТКМ со схемой пломбировки от несанкционированного доступа и вид первичного измерительного преобразователя

Программное обеспечение

является автономным и выполняет следующие функции:

- выбор режимов работы;
- калибровка магнитометра;
- сбор и обработку результатов измерений, их отображение, обеспечение процедуры измерений и записи результатов в память.

Метрологически значимая часть программного обеспечения ТКМ находится в файлах ETView.2.exe, StkRulon.ocx и ETView.2.ini. Влияние программного обеспечения на метрологические характеристики учтено при нормировании метрологических характеристик.

Идентификационные данные ПО приведены в таблицах 1.1-1.3.

Таблица 1.1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ETView.2.exe
Номер версии (идентификационный номер) ПО	2.1.2015.401
Цифровой идентификатор ПО	SHA256
	decd4eea6fc49b570e7275041114ebd262
	da20c2d9b256f7a27f14ca4c139e26
Другие идентификационные данные	Программа обеспечения процесса
	измерений, поверки и технического
	обслуживания

Таблица 1.2

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	StkRulon.ocx	
Номер версии (идентификационный номер) ПО	2.0.0.0	
Цифровой идентификатор ПО	SHA256	
	dd2c68e821c2ffe333cc7d014e547036c1	
	e2131249ece35e9cabd3759564342f	
Другие идентификационные данные	Программный модуль обеспечения	
	вывода измеренных величин в	
	графическом виде	

Таблица 1.3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ETView.2.ini
Номер версии (идентификационный номер) ПО	2.1
Цифровой идентификатор ПО	SHA256
	08db149e9a3476639a884917b537aa2a1bee
	6c3c46258dfe3a37d84612dd8a6a
Другие идентификационные данные	Файл хранения настроек ПО

Метрологически значимая часть ПО ТКМ и измеренные данные достаточно защищены с помощью средств защиты от непреднамеренных и преднамеренных изменений. Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

от минус 100 до 100
L (0.02, 0.02 B
$\pm (0.02+0.02\cdot B_{\text{изм}})$
14
0,02
350×230×100
140×55×55
380×260×35

1 /			_
Macca,	$\kappa\Gamma$	He	оолее.
muccu,	т,	110	OOMCC.

- прибор измерительный	3,41
- первичный измерительный преобразователь	0,31
- ПЭВМ типа ноутбук LENOVO B50-45	2,32
Потребляемая мощность, Вт, не более	130
Средняя наработка на отказ, ч	15000.

Нормальные условия эксплуатации

температура окружающего воздуха, °С от 15 до 25

атмосферное давление, к Π а (мм рт. ст.) 84 – 106 (630 – 795) относительная влажность воздуха, % не более 80

напряжение питания, B 230 ± 23 частота, Γ ц 50 ± 1 .

Знак утверждения типа

наносится на титульные листы руководства по эксплуатации и паспорта – типографским способом, на ТКМ - фотохимическим и ударным методами.

Комплектность средства измерений

Комплектность ТКМ приведена в таблице 2.

Таблица 2

Наименование	Обозначение	Количество, шт.
Прибор измерительный	АЮИР.411172.002	1
Первичный измерительный преобразователь	АЮИР.411511.004	1
Кабель сетевой	3ASL/75	1
Кабель сигнальный 1	Patch Cable UTP	1
Кабель сигнальный 2	АЮИР.685624.002	1
ПЭВМ типа ноутбук	LENOVO B50-45	1
Программное обеспечение ETView версия 2.1	643.00229903.00280	1
Манипулятор типа «мышь»	Манипулятор	1
Магнитометр трехкомпонентный ТКМ. Паспорт	АЮИР.416632.001 ПС	1
Магнитометр трехкомпонентный ТКМ.	АЮИР.416632.001 РЭ	1
Руководство по эксплуатации		

Поверка

осуществляется по документу РД 50-487-84 «Средства измерений магнитной индукции постоянного магнитного поля от $1\cdot 10^{-10}$ до $5\cdot 10^{-2}$ Тл образцовые. Методы и средства поверки».

Средства поверки: Государственный первичный эталон единиц магнитной индукции, магнитного потока, магнитного момента и градиента магнитной индукции ГЭТ 12-2011.

Нормативные и технические документы, устанавливающие требования к магнитометру трехкомпонентному ТКМ

- 1 ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2 ГОСТ 8.030-2013 «ГСИ. Государственная поверочная схема для средств измерений магнитной индукции, магнитного потока, магнитного момента и градиента магнитной индукции».
- 3 Техническая документация изготовителя.

Изготовитель

Открытое акционерное общество «Научно-исследовательский институт электроизмерительных приборов» (ОАО «НИИ Электромера»)

ИНН 7804027380

Адрес: 195267, г. Санкт-Петербург, пр. Просвещения, 85, лит. А

Тел./факс: (812) 324-23-65 / (812) 559-98-64

E-mail: referent@electromera.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Тел. (812) 251-76-01, факс (812) 713-01-14 E-mail: info@vniim.ru, http://www.vniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2015 г.