ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомеры-счетчики жидкости ультразвуковые накладные АТ600

Назначение средства измерений

Расходомеры-счетчики жидкости ультразвуковые накладные AT600 (далее – расходомеры-счетчики) предназначены для измерений объемного расхода и объема жидкости.

Описание средства измерений

Принцип действия расходомеров-счетчиков основан на методе измерения разности между временем прохождения ультразвуковых импульсов по направлению потокажидкости и против него. По разности времени прохождения ультразвуковых импульсов расходомерысчетчики определяют скорость потока. По определенной скорости потока и введенным параметрам трубопровода расходомеры-счетчики рассчитывают объемный расход и объем жидкости.

Расходомеры-счетчики состоят из двух ультразвуковых преобразователей (установленных в одном или двух накладных зажимах) и электронно-вычислительного блока.

Электронно-вычислительный блок расходомеров-счетчиков выполняет следующие функции:

- цифровая обработка сигналов поступающих с ультразвуковых преобразователей;
- вычисление скорости потока жидкости;
- вычисление объемного расхода и объема жидкости по введенным параметрам трубопровода (материал, внутренний и наружный диаметры, толщина стенки);
 - индикация измеренных и вычисленных параметров;
 - светодиодная индикация состояния расходомера-счетчика;
- формирование и хранение архивов событий, измеренных и вычисленных значений, настроечных параметров;
- передача измеренной информации поаналоговым сигналам (от 4 до 20 мA), импульсным, частотным сигналам и цифровым интерфейсам;
 - защита от несанкционированного доступа.
- В комплект поставки расходомеров-счетчиков может входить программный пакет Vitality для установки на операторские и инженерные станции с установленной операционной системой Windows. Программный пакет Vitality позволяет производить следующие операции:
- загружать в расходомеры-счетчики и сохранять из расходомеров-счетчиков конфигурационные данные;
- отображать измеренные и вычисленные параметры, параметры настройки и журнал событий;
- формировать протоколы и графики, основываясь на измеренной и вычисленной информации, хранящейся в расходомерах-счетчиках.

При установке расходомеров-счетчиков на трубопроводе необходимо соблюдать требования к длинам прямых участков, рекомендованные заводом-изготовителем. Длины прямолинейных участков до и после места установки расходомеров-счетчиков указаны в руководстве по эксплуатации.

Знак поверки наносится на свидетельство о поверке расходомеров-счетчиков.

а) электронно-вычислительный блок

б) ультразвуковые преобразователи

Рисунок 1 – Внешний вид расходомеров-счетчиков

Программное обеспечение

Расходомеры-счетчики имеют встроенное программное обеспечение (далее – ПО). Уровень защиты ПО расходомеров-счетчиков соответствии с Р 50.2.077–2014 — высокий. Защита ПОрасходомеров-счетчиков от несанкционированного доступа с целью изменения параметров, влияющих на метрологические характеристики, осуществляется путем аутентификации (введением пароля), ведения доступного только для чтения журнала событий и ошибок.

Идентификационные данные ПО расходомеров-счетчиков приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	AT600
Номер версии (идентификационный номер)ПО	Не ниже 01.02.16
Цифровой идентификаторПО	_
АлгоритмвычисленияцифровогоидентификатораПО	_

Метрологические и технические характеристики

Метрологические и технические характеристики, в том числе показатели точности, расходомеров-счетчиковпредставлены в таблице 2.

Таблица 2

,	
Наименование характеристики	Значение
Диапазон измерений скорости потока, м/с	От 0,03 до 12,19
Диаметр условного прохода трубопровода, мм	От 50 до 600
Температура измеряемой среды, °С	От минус 40 до плюс 200
Пределы допускаемой относительной погрешности	
измерений объемного расхода и объема жидкости, %:	
- при скорости потока от 0,03 до 0,6 м/с	$\pm 4.0^{*} \ \pm 1.0^{*}$
- при скорости потока свыше0,6 до 12,19 м/с	$\pm 1,0^*$
Пределы допускаемой приведенной погрешности	±0,1
аналогового канала вывода (от 4 до 20 мА), %	Ξ0,1
Выходные сигналы	Аналоговый (от 4 до 20 мА),
	частотный, импульсный,
	HART-протокол, Modbus-протокол

Наименование характеристики	Значение
Цифровой интерфейс связи	RS-485
Условия эксплуатации:	
- температура окружающей среды, °С	
а) электронно-вычислительного блока	От минус 20 до плюс 55
б) ультразвуковых преобразователей	От минус 40 до плюс 60
- относительная влажность, %	До 90, без конденсации влаги
- атмосферное давление, кПа	От 84 до 106,7
Параметры электропитания, В:	
- напряжение постоянного тока	От 12 до 28
- напряжение переменного тока	220 (+10 %, -15 %), 50±1 Гц
Потребляемая мощность, Вт, не более	10
Габаритные размеры, мм, не более	230×160×80
Масса, кг, не более	5,5
Средний срок службы, лет, не менее	10

Примечание — Если измеряемый параметр выводится в виде аналогового сигнала (от 4 до 20 мА) для регистрации на внешний прибор, при расчете погрешности измерений необходимо учитывать составляющую, вызванную погрешностью цифро-аналогового преобразования.

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на корпус электронно-вычислительного блока расходомеров-счетчиков в виде наклейки.

Комплектность средства измерений

Комплектность расходомеров-счетчиков представлена в таблице 3.

Таблица 3

Наименование	Количество
Расходомер-счетчик	1 шт.
Программный пакет Vitality(по заказу)	1 экз.
Руководство по эксплуатации	1 экз.
Методика поверки	1 экз.

Поверка

осуществляется по документу МП 224-30151-2015 «Государственная система обеспечения единства измерений. Расходомеры-счетчики жидкости ультразвуковые накладные АТ600. Методика поверки», утвержденному ГЦИ СИ ООО «Метрологический центр СТП» 11 июня 2015 г.

Перечень основных средств поверки (эталонов):

- поверочная расходомерная установка, диапазон воспроизводимого объемного расхода должен соответствовать рабочему диапазону поверяемого расходомера-счетчика, пределы допускаемой относительной погрешности поверочной расходомерной установки не более ± 0.3 %;
- калибратор многофункциональный MC5-R, диапазон измерений силы постоянного тока ± 100 мA, пределы допускаемой основной погрешности измерений $\pm (0.02 \%$ показания + 1.5 мкA).

Сведения о методиках (методах) измерений

Метод измерений расходомеров-счетчиков приведен в руководстве по эксплуатации.

^{*}При соблюдении требований к монтажу, указанных в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к расходомерамсчетчикам жидкости ультразвуковым накладным AT600

Техническая документация фирмы изготовителя.

Изготовители

Фирма «GESensingEMEA»

Sensing House, Shannon Free Zone East, Shannon, Co. Clare, Ирландия

Тел. +353 61 470200, факс +353 61 471359

http: www.gemeasurement.com

Фирма «GE Infrastructure Sensing, Inc.»

1100 Technology Park Drive, Billerica, MA 01821, CIIIA

Тел. +1 978 437 1224, факс +1 978 437 1224

http: www.gemeasurement.com

Фирма «GE Sensing and Inspector Technology (Changzhou) Co., Ltd»

Building 9, Jintong International Industrial Park

NO. 8 Xinhu Road Changzhou, Jiangsu, Китай

Тел. 0086 519 88318080

Заявитель

Фирма «GE Sensing EMEA»

Sensing House, Shannon Free Zone East, Shannon, Co. Clare, Ирландия

тел. +353 61 470200, факс +353 61 471359

http: www.gemeasurement.com

Испытательный центр

ГЦИ СИ ООО «Метрологический центр СТП»

420107, г. Казань, ул. Петербургская, д. 50, корп. 5

Тел. (843) 214-20-98, факс (843) 227-40-10

E-mail: office@ooostp.ru, http://www.ooostp.ru

Аттестат аккредитации ГЦИ СИ ООО «Метрологический центр СТП» по проведению испытаний средств измерений в целях утверждения типа № 30151-11 от 01.10.2011 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

C.C.	Голубев

М.п. «___ » _____ 2015 г.