ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы ВСД «ДЛИННОМЕР»

Назначение средства измерений

Весы ВСД «ДЛИННОМЕР» (далее — весы) предназначены для измерений массы длинномерных грузов.

Описание средства измерений

Весы имеют модульную конструкцию и состоят из грузоприемного устройства (далее — $\Gamma\Pi Y$), включающего в себя тензорезисторные весоизмерительные датчики (далее — датчики, п. Т.2.2.1 Γ OCT OIML R 76–1), и весоизмерительного прибора (далее — индикатор, п. Т.2.2.2 Γ OCT OIML R 76–1).

ГПУ (рисунок 1) представляет собой систему из двух, трех или четырех механически не связанных между собой весоизмерительных механизмов (секций), устанавливаемых на специально подготовленное (выровненное) основание. Секция представляет собой рамную конструкцию, в верхней части которой жестко закреплены два датчика, к которым с помощью шарнирного механизма и подвижных рычагов подвешена поперечина, на которую опирается груз при взвешивании.

Две секции

Четыре секции

Рисунок 1 — Общий вид ГПУ весов

В весах используются датчики:

- датчики весоизмерительные тензорезисторные BSA, BSS (Госреестр № 51261-12);
- датчики весоизмерительные тензорезисторные HLC, BLC, ELC (Госреестр № 21177-13);
- датчики весоизмерительные тензорезисторные H, модификация H4 (Госреестр № 53636-13);
- датчики весоизмерительные тензорезисторные Shear Beam, семейство 3510 (Госреестр № 58367-14);

Сигнальные кабели датчиков через соединительную коробку подключаются к индикатору.

В весах используются индикаторы:

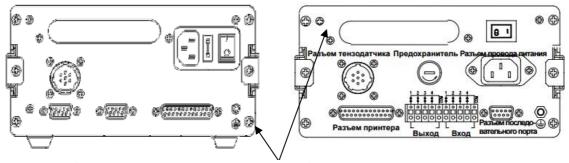
- приборы весоизмерительные WE, модификации WE2110, WE2111 (Госреестр № 61808-15);
- приборы весоизмерительные СІ, модификации СІ-1560, СІ-5010A, СІ-5200A, СІ-6000А
 (Госреестр № 50968-12);
- приборы весоизмерительные Микросим, модификации М0601, М0601-БМ-2 (Госреестр № 55918-13).

Общий вид индикаторов представлен на рисунке 2.

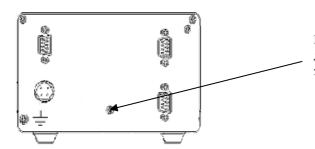
Принцип действия весов основан на преобразовании возникающей под действием силы тяжести взвешиваемого груза деформации упругих элементов датчиков в аналоговый электрический сигнал, пропорциональный его массе, с последующим аналого-цифровым преобразованием, математической обработкой и выдачей результатов измерений массы в визуальной форме на дисплее индикатора весов и/или их передачей в виде электрического сигнала через цифровой интерфейс связи на периферийные устройства, например, принтер или персональный компьютер.

Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1—2011):

- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство индикации отклонения от нуля для приборов Микросим (4.5.5);
- устройство слежения за нулем (Т.2.7.3);

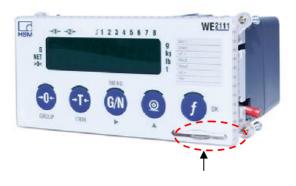

- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);
- устройство предварительного задания значения массы тары для приборов WE2110,
 WE 2111 (T.2.7.5);
 - определение стабильного равновесия для приборов WE2110, WE 2111 (4.4.2);
 - устройство выбора единиц измерений для приборов WE2110, WE 2111 (2.1);
- процедура просмотра всех соответствующих символов индикации в активном и неактивном состояниях (5.3.1).
 - запоминающее устройство для приборов WE2110, WE 2111 (4.4.6).

Обозначение класса точности, значения максимальной нагрузки Max (Max_i диапазонов взвешивания многодиапазонных весов), минимальной нагрузки Min (Min_i диапазонов взвешивания многодиапазонных весов), поверочный интервал e (e_i диапазонов взвешивания многодиапазонных весов), диапазон температуры, указываются на маркировочной табличке весов


Метрологические характеристики конкретного образца модификации весов определяются метрологическими характеристиками примененных модулей (датчика и индикатора).

Модели весов имеют следующие обозначения вида ВСД [1], где [1] — условное обозначение максимальной нагрузки (Max): 003, 005, 01, 015, 02, 03, 05. Первая цифра—количество десятков тонн, вторая цифра — количество единиц тонн, третья цифра (при наличии) — количество сотен килограмм. Порядок цифр — слева направо.

Знак поверки в виде наклейки наносится на лицевую панель индикатора и/или ГПУ весов и/или свидетельство о поверке. Оттиск поверительного клейма наносится в соответствии со схемой пломбировки для защиты от несанкционированного доступа (пломбировке подлежит переключатель режима настройки). Схемы пломбировки представлены на рисунках 3 и 4.



Место пломбировки свинцовой или мастичной пломбой или разрушаемой наклейкой доступа к переключателю режима юстировки на задней панели корпуса приборов CI-6000A, CI-5010A, CI-5200A

Место пломбировки разрушаемой наклейкой доступа к переключателю режима юстировки на задней панели корпуса приборов Микросим

Рисунок 3 — Схема пломбировки от несанкционированного доступа

Место пломбировки разрушаемой наклейкой доступа к переключателю режима настройки на передней панели корпуса приборов WE2111

Место пломбировки разрушаемой наклейкой доступа к переключателю режима юстировки на передней панели корпуса приборов WE2110

Рисунок 4 — Схема пломбировки от несанкционированного доступа

Программное обеспечение

Программное обеспечение (ПО) весов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Изменение ПО весов через интерфейс пользователя невозможно.

В приборах CI-6000A, CI-5010A, CI-5200A, Микросим (М0601, М0601-БМ-2) доступ к параметрам настройки возможен только при нарушении пломбы и, в зависимости от исполнения весов, изменения положения переключателя настройки или перемычки на печатной плате.

В приборах WE2111, WE2110 при изменении метрологически значимых параметров настройки изменяются показания несбрасываемого счетчика.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «Высокий» по Р 50.2.077—2014.

Идентификационные данные ПО отображаются при включении весов и приведены в таблице 1.

Таблица 1 — Идентификационные данные ПО

тионици т тидентификационные данные то						
Идентификационные	Значение (для приборов)					
данные (признаки)						
	CI-6000A	CI-1560	СІ-5200А и	Микросим	WE2111	WE2110
			CI-5010A	(M0601,		
				M0601-		
				БМ-2)		
1	2					
Идентификационное наименование ΠO^{1}		—	_	Ed 5.XX	_	
Номер версии	1.01;	1.00;	1.0010;	5.XX	v1.0X	P41,
(идентификационный	1.02;	1.01;	1.0020;			P5X
номер) Π О $^{1)}$	1.03	1.02	1.0030			

Продолжение таблицы 1

1	2					
Цифровой идентификатор	_	_	_	0x3C40	_	
ПО						
Другие	_	_	_			
идентификационные						
данные, если имеются						

Примечанияк Таблице 1:

Метрологические и технические характеристики

Класс точности по ГОСТ OIML R 76-1—2011III (средний).

Таблица 2 — Весы с одним диапазоном взвешивания

	Максимальная	Поверочный	Число поверочных
Модификация	нагрузка,	интервал e , действительная	интервалов n
	Мах, кг	цена деления (шкалы) d ,	
		e= d , кг	
ВСД 003	300	0,1	3000
ВСД 005	500	0,1	5000
ВСД 005	500	0,2	2500
ВСД 01	1000	0,2	5000
ВСД 01	1000	0,5	2000
ВСД 015	1500	0,5	3000
ВСД 02	2000	0,5	4000
ВСД 02	2000	1	2000
ВСД 03	3000	1	3000
ВСД 05	5000	2	2500

Таблица 3 — Многодиапазонные весы

тиолици з типо	тодианазонные всен		T .	
	Лионозои	Максимальная	Поверочный	Число
3.5	Диапазон	Максимальная	интервал e ,	
Модификация	взвешивания	нагрузка,	действительная	поверочных
		Мах, кг	цена деления d ,	интервалов <i>п</i>
			e= d , кг	
ВСД 003	W1	150	0,05	3000
	W2	300	0,1	3000
ВСД 005	W1	250	0,1	2500
	W2	500	0,2	2500
ВСД 01	W1	500	0,2	2500
	W2	1000	0,5	2000
ВСД 02	W1	1000	0,5	2000
	W2	2000	1	2000
ВСД 03	W1	1500	0,5	3000
	W2	3000	1	3000
ВСД 05	W1	2500	1	2500
	W2	5000	2	2500

¹⁾ Номер версии (идентификационный номер) ΠO должен быть не ниже указанных. X или XX – обозначение номера версии метрологически незначимой части ΠO .

Диапазон уравновешивания тары
Диапазон температуры для ГПУ, °С, при использовании датчиков:
– BSA, H4, 3510 от минус 10 до плюс 40;
– BSS от минус 20 до плюс 40;
– HLC, BLC, ELC от минус 30 до плюс 40;
Диапазон температуры индикаторов, °С:
– CI-6000A, CI-5010A, CI-5200A, WE2111, WE2110 от минус 10 до плюс 40;
– Микросим (М0601, М0601-БМ-2)– от минус 35 до плюс 40.
Параметры электропитания весов от сети переменного тока (CI-6000A, CI-5010A, CI-5200A, Микросим М0601, Микросим М0601-БМ-2 через адаптер):
напряжение, B
частота, Γ ц
Параметры электропитания весов от сети переменного тока (WE2110):
напряжение, В от 110 до 240;
частота, Γ ц
Параметры электропитания от источника постоянного тока (напряжение), В: WE2111, WE2110от 12 до 24.
, , , , , , , , , , , , , , , , , , ,

Знак утверждения типа

наносится на маркировочные таблички, расположенные на корпусе ГПУ и/или индикатора, а также на титульные листы эксплуатационной документации.

Комплектность средства измерений

Весы	1 шт.
Руководство по эксплуатации весов	1 экз.
Руководство по эксплуатации индикатора	
Паспорт весов	1 экз.

Поверка

осуществляется по приложению ДА «Методика поверки весов» ГОСТ OIML R 76-1—2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а также процедура идентификации программного обеспечения приведены в п. 5.3 «Поверка весов» руководства по эксплуатации весов.

Основные средства поверки: гири, соответствующие классу точности M_1 , $M_{1\text{-}2}$ по ГОСТ OIML R 111-1–2009.

Сведения о методиках (методах) измерений

Документ «Весы ВСД «ДЛИННОМЕР». Руководство по эксплуатации», п. 4.4 «Порядок работы».

Нормативные и технические документы, устанавливающие требования к весам ВСД «ЛЛИННОМЕР»

- 1. ГОСТ OIML R 76-1—2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».
- 2. ГОСТ 8.021-2005 «ГСИ. Государственная поверочная схема для средств измерений массы».
 - 3. ТУ 4274-022-31200543-15 «Весы ВСД «ДЛИННОМЕР». Технические условия».

Изготовитель

Непубличное акционерное общество «ЭТАЛОН ВЕСПРОМ», г. Челябинск (НАО «ЭТАЛОН ВЕСПРОМ»)

ИНН 7453087740

454006, Россия, г. Челябинск, ул. Российская 1

Тел./факс: (351) 211 33 25

http://www.etalon-vesprom.ru; vesprom@etalon.chel.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: (495) 437-55-77/ 437-56-66 e-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____» _____2016 г.