ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 220 кВ «НПС-8»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 220 кВ «НПС-8» (далее - АИИС КУЭ), предназначена для измерения активной и реактивной электрической энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень состоит из измерительных трансформаторов тока (далее – TT) класса точности 0,5S по ГОСТ 7746-2001, измерительных трансформаторов напряжения (далее – TH) класса точности 0,5 по ГОСТ 1983-2001, счетчика активной и реактивной электроэнергии типа А1800 класса точности 0,5S по ГОСТ Р 52323-05 в части активной электроэнергии и класса точности 1,0 по ГОСТ Р 52425-05 в части реактивной электроэнергии, вторичных электрических цепей и технических средств приема – передачи данных.

Второй уровень – информационно-вычислительный комплекс электроустановки (далее – ИВКЭ), созданный на базе устройств сбора и передачи данных (далее – УСПД) типа RTU-325 (Госреестр СИ РФ № 37288-08, зав. № 009394), устройства синхронизации системного времени (далее – УССВ) и коммутационного оборудования.

УСПД типа RTU-325 обеспечивает сбор данных со счетчиков, расчет (с учетом коэффициентов трансформации TT и TH) и архивирование результатов измерений электрической энергии в энергонезависимой памяти с привязкой ко времени, передачу этой информации в информационно-вычислительный комплекс (далее — ИВК). Полученная информация накапливается в энергонезависимой памяти УСПД. Расчетное значение глубины хранения архивов составляет не менее 35 суток. Точное значение глубины хранения информации определяется при конфигурировании УСПД.

Третий уровень – ИВК обеспечивает выполнение следующих функций:

- сбор информации от ИВКЭ (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базах данных серверов ПАО «Федеральная Сетевая Компания Единой Энергетической Системы» (ПАО «ФСК ЕЭС») не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии (далее OPЭ).

Третий уровень – информационно-вычислительный комплекс (далее – ИВК), который входит в Систему автоматизированную информационно-измерительную коммерческого учета электрической энергии Единой национальной электрической сети (далее – АИИС КУЭ ЕНЭС) (Госреестр №. 59086-14).

ИВК включает в себя каналообразующую аппаратуру, центры сбора и обработки данных (далее – ЦСОД), автоматизированные рабочие места (APM), СОЕВ.

Для работы с АИИС КУЭ на уровне подстанции предусматривается организация APM подстанции.

Измерительные каналы (далее – ИК) АИИС КУЭ включают в себя первый, второй и третий уровни АИИС КУЭ.

Первичные фазные напряжения преобразуются токи И измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Первичный ток в счетчиках измеряется с помощью измерительных трансформаторов тока, имеющих малую линейную и угловую погрешность в широком диапазоне измерений. В цепи трансформаторов тока установлены шунтирующие резисторы, сигналы с которых поступают на вход измерительной микросхемы. Измеряемое напряжение каждой фазы через высоколинейные резистивные делители подается непосредственно на измерительную Измерительная микросхема осуществляет выборки входных сигналов токов и напряжений по каждой фазе, используя встроенные аналого-цифровые преобразователи, и выполняет вычисления. С выходов измерительной микросхемы на микроконтроллер поступают интегрированные по времени сигналы активной и реактивной энергии. Микроконтроллер осуществляет дальнейшую обработку полученной информации и накопление данных в энергонезависимой памяти, а также микроконтроллер осуществляет управление отображением информации на ЖКИ, выводом данных по энергии на выходные импульсные устройства и обменом по цифровому интерфейсу. Измерение максимальной мощности счетчик осуществляет по заданным видам энергии (активная и реактивная). Усреднение мощности происходит на интервалах, длительность которых задается программно.

УСПД автоматически проводит сбор результатов измерений и состояние средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

ИВК АИИС КУЭ ЕНЭС осуществляет опрос уровня ИВКЭ последовательноциклическим способом. Данные по наземным сетям связи операторов (на основе собственных и арендованных цифровых каналов связи) поступают на соответствующие узлы передачи данных операторов, размещенных на ММТС-9, г. Москва. Далее данные по каналу единой цифровой сети связи энергетики (далее – ЕЦССЭ) поступают на ЦСОД Исполнительного аппарата ПАО «ФСК ЕЭС» (далее ЦСОД ИА ПАО «ФСК ЕЭС») для последующей обработки, хранения и передачи смежным субъектам ОРЭМ, филиалу ОАО «СО ЕЭС» и ИАСУ КУ ОАО «АТС». Связь организована по дуплексным каналам, данные от ЦСОД ИА ПАО «ФСК ЕЭС» к уровню ИВКЭ поступают в обратном порядке.

В состав АИИС КУЭ входит СОЕВ, выполняющая законченную функцию измерений времени и формируется на всех уровнях АИИС КУЭ. СОЕВ включает в себя радиосервер точного времени типа РСТВ-01, устройство синхронизации времени УССВ-2, ИВК, УСПД, счетчики электрической энергии.

Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет УСПД, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и УСПД на величину более ± 2 с.

Корректировка часов УСПД выполняется автоматически устройством синхронизации времени УССВ-2, которое подключено к УСПД по интерфейсу RS-232. Корректировка часов УСПД выполняется ежесекундно.

На ЦСОД ИА ПАО «ФСК ЕЭС» установлен радиосервер точного времени типа РСТВ-01 (Госреестр № 40586-12). РСТВ-01 расположены в серверных стойках ЦСОД. РСТВ-01 автоматически выполняет контроль времени в ЦСОД, корректировка часов ЦСОД выполняется с погрешностью, не более ± 2 с.

При длительном нарушении работы канала связи между УСПД и счетчиками, время счетчиков корректируется от переносного инженерного пульта. При снятии данных с помощью переносного инженерного пульта через оптический порт счётчика производится автоматическая подстройка часов опрашиваемого счётчика.

СОЕВ обеспечивает корректировку времени ИК АИИС КУЭ с точностью не хуже \pm 5,0 с. Защита от несанкционированного доступа предусмотрена на всех уровнях сбора,

передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и ИВК отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

Таблица 1 – Идентификационные данные СПО АИИС КУЭ ЕНЭС, установленного в ИВК АИИС КУЭ ЕНЭС

THIT IL S EIISC							
Идентификационные признаки	Значение						
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС						
Номер версии (идентификационный номер) ПО	1.0						
Цифровой идентификатор ПО	d233ed6393702747769a45de8e67b57e						
Алгоритм вычисления цифрового идентификатора ПО	MD5						
Примечание – Алгоритм вычисления циф	рового идентификатора ПО – MD5						
Хэш сумма берется от склейки файлов: DataServer.exe, DataServer_USPD.exe							

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2 нормированы с учетом Π O.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав первого уровня ИК АИИС КУЭ и метрологические характеристики ИК приведены в таблице 2.

Таблица 2 – Состав первого уровня ИК и метрологические характеристики

	<u>тельный</u>	Перво	71	еские характеристики			Метро	логические хар	рактеристики			
	анал		Изме			r	ИК	·				
Номер ИК	Наименование объекта учета, диспетчерское наименование присоединения		Вид СИ, класс точности , коэффициент трансформации, № Госреестра СИ или свидетельства о поверке		Обозначение, тип	Заводской номер	K _{TT} ·K _{TH} ·K _C	Наименование измеряемой величины	Вид энергии	Границы интервала основной относительной погрешности измерений, (±d), %, при доверительной вероятности Р=0,95	Границы интервала относительной погрешности измерений, (±d), %, в рабочих условиях, при доверительной вероятности P=0,95	
1	2		3				5	6	7	8	9	10
		LL	$K_T = 0.5S$	Α	ТЛО-10	15-9297		\sim				
			$K_{TT} = 600/5$	B	ТЛО-10	15-9301		$^{\mathrm{W}_{\mathrm{P}}}$				
	59		№ 25433-11	С	ТЛО-10	15-9302		я, У				
	ķВ J	kB J	$K_T = 0.5$	Α	ЗНОЛП-ЭК-10	15-9279		вна	іая ная			
6	Ячейка 10 кВ №5	10	TH	$K_{TH} = 10000/\sqrt{3}/100/\sqrt{3}$	В	ЗНОЛП-ЭК-10	15-9282	2000	икти Закт	Активная еактивна	1,2	5,0
			№ 47583-11	С	ЗНОЛП-ЭК-10	15-9280	1	з ки	Активная Реактивная	1,2	3,0	
		Счетчик	Кт = 0,5S/1,0 Ксч = 1 № 31857-11	A180	05RALQ-P4GB-DW-4	01291669		Энергия активная, ^V Энергия реактивная,		2,5	4,0	

Продолжение таблицы 2

11	родолжение	Tuom		1					1 0		1.0															
1	2		3	1	4	5	6	7	8	9	10															
8-1	_	$K_T = 0.5S$	Α	ТЛП-10	15-9317																					
		LL	$K_{TT} = 2000/5$	В	ТЛП-10	15-9315		V _P																		
	8-1		№ 30709-11	С	ТЛП-10	15-9313		[, W																		
		TH	$K_T = 0.5$ $K_{TH} = 10000/\sqrt{3}/100/\sqrt{3}$ Nomega 47583-11	A	ЗНОЛП-ЭК-10	15-9279		Вная	ая ная																	
7				В	ЗНОЛП-ЭК-10	15-9282	40000	ІКТИ] ЗАКТІ	Активная Реактивная	1,2	5,0															
/	10 к			С	ЗНОЛП-ЭК-10	15-9280	4	я виг	Акл	1,2	3,0															
	KJI	Счетчик	Кт = 0,5S/1,0 Ксч = 1 № 31857-11	A18	05RALQ-P4GB-DW-4	01291671		Энергия активная, $W_{ m P}$ Энергия реактивная, $W_{ m Q}$		2,5	4,0															
			$K_T = 0.5S$	Α	ТЛП-10	15-9311																				
		LL	Ktt = 2000/5 № 30709-11	В	ТЛП-10	15-9308		Энергия активная, W _P Энергия реактивная, W _Q																		
	111			С	ТЛП-10	15-9310																				
	B Ng		$K_T = 0.5$ $K_{TH} = 10000/\sqrt{3}/100/\sqrt{3}$	A	ЗНОЛП-ЭК-10	15-9279			ая ная																	
8	Ячейка 10 кВ №11	TH		В	ЗНОЛП-ЭК-10	15-9282	40000		Активная Реактивная	1,2	5,0															
	йка		№ 47583-11	C	ЗНОЛП-ЭК-10	15-9280	4	я вис	Ак																	
	Ячеў	Счетчик	Кт = 0,5S/1,0 Ксч = 1 № 31857-11	A18	05RALQ-P4GB-DW-4	01291672		Энерг		2,5	4,0															
			$K_T = 0.5S$	Α	ТЛП-10	15-9314																				
		TT	ΓŢ	LI	LI	ГТ	LI	ГТ	ΓŢ	LT	LT	LT	ГТ	LT	LT	LΤ	ΙΙ	$K_{TT} = 2000/5$	В	ТЛП-10	15-9316		N _P			
	3-2		№ 30709-11	С	ТЛП-10	15-9306		W, W																		
	JC-8		$K_T = 0,5$	A	ЗНОЛП-ЭК-10	15-9283		Энергия активная, W _P Энергия реактивная, W _Q	ая																	
6 КЛ 10 кВ НПС-8-2	B HII	TH	E $KTH = 10000/\sqrt{3}/100/\sqrt{3}$	В	ЗНОЛП-ЭК-10	15-9281	40000		Активная Реактивная	1,2	5,0															
	10 к		№ 47583-11	С	ЗНОЛП-ЭК-10	15-9278	4	лия в эд ви	Акл Реак	·																
	KJI	Счетчик	Kт = 0,5S/1,0 Ксч = 1 № 31857-11	A180	05RALQ-P4GB-DW-4	01291670		Энерг		2,5	4,0															

Продолжение таблицы 2

1	2	,	3		4	5	6	7	8	9	10					
10	Ячейка 10 кВ №6	Счетчик ТН ТТ	KT = 0.5S	A	ТЛП-10	15-9312										
			Ktt = 2000/5	В	ТЛП-10	15-9309		$W_{\rm P}$								
			№ 30709-11	C	ТЛП-10	15-9307		Энергия активная, W Энергия реактивная, ¹								
			$K_T = 0.5$ $K_{TH} = 10000/\sqrt{3}/100/\sqrt{3}$	Α	ЗНОЛП-ЭК-10	15-9283	40000		Активная Реактивная							
	101			В	ЗНОЛП-ЭК-10	15-9281				1,2	5,0					
	ейка		№ 47583-11	С	ЗНОЛП-ЭК-10	15-9278	4	; 9d ві	Ак Реан							
	Яч		Kт = 0,5S/1,0 Ксч = 1 № 31857-11	A180	05RALQ-P4GB-DW-4	01291674		Энері		2,5	4,0					
		_	$K_T = 0.5S$	Α	ТЛО-10	15-9300										
	210		$K_{TT} = 600/5$	В	ТЛО-10	15-9298		$W_{\rm P}$								
			№ 25433-11	C	ТЛО-10	15-9299		, W								
	Ячейка 10 кВ №10		$K_T = 0.5$	Α	ЗНОЛП-ЭК-10	15-9283		вная	іая ная							
11	10 к	10 к	10 к	10 к	10 к	10 к	10 к	$K_{TH} = 10000/\sqrt{3}/100/\sqrt{3}$	В	ЗНОЛП-ЭК-10	15-9281	2000	акти	Активная Реактивная	1,2	5,0
	йка		№ 47583-11	C	ЗНОЛП-ЭК-10	15-9278		гия а эд ва	Ак: Реак	·	·					
	Яче	Счетчик	Kт = 0,5S/1,0 Ксч = 1 № 31857-11	A180	05RALQ-P4GB-DW-4	01291675		Энергия активная, '		2,5	4,0					

Примечания:

- 1. В Таблице 2 в графе «Границы интервала относительной погрешность измерений, (±d), %, в рабочих условиях, при доверительной вероятности P=0,95» приведены границы интервала погрешности результата измерений посредством ИК при доверительной вероятности P=0,95, cosφ=0,5 (sinφ=0,87), токе ТТ, равном 2 % от Іном и температуре окружающего воздуха в месте расположения счетчика электроэнергии от 15 до 30 °C.
- 2. Нормальные условия эксплуатации:
- параметры питающей сети: напряжение ($220 \pm 4,4$) В; частота ($50 \pm 0,5$) Гц;
- параметры сети: диапазон напряжения $(0.98-1.02)\mathrm{U_H}$; диапазон силы тока (1.0-1.2) Іном; коэффициент мощности cosj (sinj) -0.87(0.5); частота (50 ± 0.5) Γ_{U} ;
- температура окружающего воздуха: TT от 15 до 35 °C; TH от 15 до 35 °C; счетчиков: от 21 до 25 °C; УСПД от 15 до 25 °C; ИВК от 15 до 25 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100 ± 4) кПа.
- 3. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения $(0.9-1.1)U_{\rm H1}$; диапазон силы первичного тока $(0.01-1.2)I_{\rm H1}$; диапазон коэффициента мощности cosj (sinj) 0.5-1.0 (0.6-0.87); частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха от -30 до 35 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (100 ± 4) кПа.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения $(0,9-1,1)U_{\rm H2}$; диапазон силы вторичного тока $(0,02\ (0,01\ при\ cos\phi=1)-1,2)I_{\rm H2}$; диапазон коэффициента мощности cosj (sinj) $0,5-1,0\ (0,6-0,87)$; частота $(50\pm0,5)\ \Gamma$ ц;
- магнитная индукция внешнего происхождения 0,5 мТл;
- температура окружающего воздуха 15 до 30°C;
- относительная влажность воздуха (40 60) %;
- атмосферное давление (100 ± 4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 1) Гц;
- температура окружающего воздуха от 15 до 30 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (100 ± 4) кПа.
- 4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные, утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ: для счетчиков типа A1800 не менее 120000 ч; среднее время восстановления работоспособности 168 ч;
- УСПД среднее время наработки на отказ не менее 70 000 ч., среднее время восстановления работоспособности 24 ч.;
- сервер среднее время наработки на отказ не менее 45000 ч, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;

В журнале событий счетчика фиксируются факты:

- параметрирование;
- пропадания напряжения;
- коррекции времени.

В журнале событий УСПД фиксируются факты:

- параметрирование;
- пропадания напряжения;
- коррекции времени в счетчике и сервере;
- пропадание и восстановление связи со счетчиком;
- выключение и включение сервера.

Защищённость применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

- выводы измерительных трансформаторов тока;
- электросчётчика;
- испытательной коробки;
- УСПД;

защита на программном уровне информации при хранении, передаче, параметрирование:

- пароль на счетчике;
- пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков типа Альфа A1800 не менее 30 лет;
 - ИВКЭ результаты измерений, состояние объектов и средств измерений не менее 35 суток;
 - ИВК результаты измерений, состояние объектов и средств измерений не менее 3,5 лет.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии подстанции 220 кВ «НПС-8».

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблицы 3 – Комплектность АИИС КУЭ

Наименование	Количество (шт.)
Трансформаторы тока ТЛО-10	6
Трансформаторы тока ТЛП-10	12
Трансформаторы напряжения ЗНОЛП-ЭК-10	6
Счетчик электрической энергии трехфазный многофункциональный Альфа A1800	6
Устройства сбора и передачи данных RTU-325	1
ИВК АИИС КУЭ ЕНЭС	1
Радиосервер точного времени РСТВ-01	1
УССВ-2	1
СПО АИИС КУЭ ЕНЭС	1
Переносной инженерный пульт на базе Notebook	1
Формуляр	1
Методика поверки	1

Поверка

осуществляется по документу МП 63287-16 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 220 кВ «НПС-8». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в декабре 2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчик типа АЛЬФА А1800 по документу МП 2203-0042-2006 «Счётчики электрической энергии трёхфазные многофункциональные Альфа A1800. Методика поверки», утвержденному ГЦИ СИ «ВНИИМ им Д.И. Менделеева» 19 мая 2006 г.;
- УСПД RTU-325 по документу «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки. ДЯИМ.466.453.005МП.», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- ИВК АИИС КУЭ ЕНЭС в соответствии с документом МП 59086-14 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС. Методика поверки», утвержденному ГЦИ СИ ФБУ «Пензенский ЦСМ» 10 ноября 2014 г.;
- РСТВ-01 в соответствии с документом «Радиосервер точного времени РСТВ-01. Руководство по эксплуатации» ПЮЯИ.468212.039РЭ, раздел 5 «Методика поверки», утвержденным ФГУП «ВНИИФТРИ» 22 января 2009г.;

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками АИИС КУЭ и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 °C до 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 % до 100 %, дискретность 0,1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 мТл до 19,99 мТл.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электроэнергии и мощности с использованием Системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 220 кВ «НПС-8», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 220 кВ «НПС-8»

ГОСТ Р 8.596-2002«ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

Изготовитель

Общество с ограниченной ответственностью «Средневолжская Инжиниринговая Компания», (ООО «СВИК»)

ИНН: 6319179949

Юридический/почтовый адрес: 443008, Россия, г. Самара, тупик Томашевский, д. 3а, офис 303

Тел./факс: (846) 246-03-27.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев