ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы программно-технические микропроцессорной системы автоматизации нефтеперекачивающей станции "Шнейдер Электрик"

Назначение средства измерений

Комплексы программно-технические микропроцессорной системы автоматизации нефтеперекачивающей станции "Шнейдер Электрик" (далее – комплексы) предназначены (при подключении к внешним, не входящим в состав комплексов, датчикам) для измерения и контроля технологических параметров (уровень, температура, давление, расход, загазованность воздуха, виброскорость, сила тока, напряжение, мощность, частота следования и количество импульсов, осевое смещение ротора, потенциал), а также для воспроизведения силы и напряжения постоянного тока для управления положением или состоянием исполнительных механизмов.

Описание средства измерений

Принцип действия измерительных каналов (ИК) аналогового ввода комплексов заключается в следующем:

- сигналы в виде силы постоянного тока, напряжения постоянного тока, сопротивления или импульсной последовательности от внешних, не входящих в состав комплексов, первичных измерительных преобразователей (датчиков) поступают либо на модули ввода аналоговых сигналов, либо на промежуточные измерительные преобразователи;
- промежуточные измерительные преобразователи осуществляют нормализацию сигналов и обеспечивают гальваническую развязку цепей первичных измерительных преобразователей и цепей аналоговых модулей ввода;
 - модули ввода аналоговых сигналов выполняют аналого-цифровое преобразование.

Принцип действия ИК вывода (воспроизведения) аналоговых сигналов управления, состоящих из модулей вывода и промежуточных измерительных преобразователей, основан на цифро-аналоговом преобразовании.

Модули ввода/вывода предназначены для совместной работы по внешней шине с контроллерами программируемыми логическими Modicon Quantum и Modicon M340.

Комплексы обеспечивают выполнение следующих функций:

- преобразование аналоговых электрических сигналов унифицированных диапазонов в цифровые коды и воспроизведение выходных аналоговых сигналов управления исполнительными механизмами;
- взаимодействие с другими информационно-измерительными, управляющими и смежными системами и оборудованием объекта по проводным и волоконно-оптическим линиям связи;
- автоматическое, дистанционное и ручное управление технологическим оборудованием и исполнительными механизмами с выявлением аварийных ситуаций, реализацию функций противоаварийной защиты с управлением световой и звуковой сигнализацией;
- отображение информации о ходе технологического процесса и состоянии оборудования;
- визуализация результатов контроля параметров технологического процесса, формирование отчетных документов и хранение архивов данных;
- диагностику каналов связи оборудования с автоматическим включением резервного оборудования, сохранение настроек при отказе и отключении электропитания.

Комплексы являются проектно-компонуемыми изделиями. В зависимости от заказа в состав комплекса может входить следующее оборудование:

- шкафы центрального контроллера (ШКЦ) и устройства связи с объектом (УСО);
- шкафы блока ручного управления (БРУ) и вторичной аппаратуры (ШВА);
- шкафы системы автоматического регулирования (САР) и преобразователя частоты (ПЧ)

- автоматизированное рабочее место (АРМ) оператора с горячим резервированием;
- АРМ инженера.

Приборные шкафы комплексов должны быть расположены в невзрывоопасных зонах промышленного объекта. Связь с оборудованием и преобразователями, установленными во взрывоопасной зоне, осуществляется через искробезопасные цепи. Внутри шкафов предусмотрено терморегулирование для поддержания нормальных условий, включающее в себя контроль температуры внутри шкафа, систему вентиляции и (при необходимости) систему обогрева.

Внешний вид шкафа центрального контроллера (ШКЦ) и шкафа устройства связи с

объектом (УСО) показаны на рисунке 1.

Механические замки

С закрытой дверцей С открытой дверцей Шкаф центрального контроллера (ШКЦ)

С закрытой дверцей С открытой дверцей Шкаф устройства связи с объектом (УСО)

Рисунок 1 – Внешний вид шкафов комплексов

Программное обеспечение

Идентификационные данные встроенного программного обеспечения (ПО) приведены в таблицах 1, 2.

Таблица 1 – Встроенное программное обеспечение процессорных модулей 140 CPUxxxxx контроллеров Modicon Quantum

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	140 CPUxxxx	
Номер версии (идентификационный номер) ПО	не ниже 3.13	
Цифровой идентификатор ПО	-	

Таблица 2 — Встроенное программное обеспечение процессорных модулей CPU BMXP34xxx контроллеров Modicon M340

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	BMXP34xxx
Номер версии (идентификационный номер) ПО	не ниже 2.5
Цифровой идентификатор ПО	-

Для визуализации результатов измерений /задания уровней воспроизводимых ИК сигналов используется сервисное специализированное ПО "iFIX, Alpha.Server",

Встроенное ПО контроллеров, предназначенное для управления работой модулей, не влияет на метрологические характеристики средства измерений (метрологические характеристики контроллеров нормированы с учетом ПО). Программная защита ПО и результатов измерений реализована на основе системы паролей и разграничения прав доступа. Механическая защита ПО основана на использовании встроенного механического замка на дверях шкафов, в которых монтируются ИК. Уровень защиты встроенного ПО - "высокий" по P50.2.077-2014.

Метрологические и технические характеристики

Таблица 3 – Пределы допускаемой погрешности ИК ввода

Таолица 3 – Преде	елы допускаемои і	тогрешности ИК вв	вода	
Функциональное назначение ИК		Входной сигнал ИК	Пределы допускаемой погрешности ИК в исполнении	
			с промежуточным преобразователем	без промежуточного преобразователя
ИК избыточного д	цавления		$\gamma = \pm 0.14 \%$	$\gamma = \pm 0.10 \%$
нефти/нефтепроду	укта, сред			
вспомогательных	систем (кроме			
давления воздуха)				
ИК избыточного да	ИК избыточного давления воздуха		$\gamma = \pm 0.25 \%$	$\gamma = \pm 0.10 \%$
ИК перепада давле	ния		$\gamma = \pm 0.25 \%$	$\gamma = \pm 0.10 \%$
нефти/нефтепродуг	кта	т	$\gamma = \pm 0.23\%$	$\gamma = \pm 0.10\%$
ИК перепада давле	ния сред	I от 4 до 20 мА	0.25 0/	$\gamma = \pm 0.10 \%$
вспомогательных с	истем	от 0 до 20 мА	$\gamma = \pm 0.25 \%$	$\gamma = \pm 0.10\%$
ИК силы тока, напр	ояжения,	от - 20 до 20 мА	$\gamma = \pm 0.25 \%$	ν = ± 0.10.0/
мощности		от 0 до 21 мА	$\gamma = \pm 0.23\%$	$\gamma = \pm 0.10 \%$
ИК виброскорости		010 до 21 мл	$\gamma = \pm 0.25 \%$	$\gamma = \pm 0.10 \%$
ИК загазованности	воздуха		$\Delta = \pm 4.0 \%$ HKTIP	$\Delta = \pm 2.0$ % HKПР
ИК расхода нефти/			$\gamma = \pm 0.25 \%$	$\gamma = \pm 0.10 \%$
ИК осевого смещен	ния ротора	•	$\Delta = \pm 0.09 \text{ mm}$	$\Delta = \pm 0.07 \text{ MM}$
ИК уровня	от 0 до 7000 мм		$\Delta=\pm9,0\mathrm{mm}$	$\Delta = \pm 7.0 \; \mathrm{MM}$
жидкости во	от 0 до 12000 мм		_	$\Delta = \pm 9.0 \text{ MM}$
вспомогательных	от 0 до 23000 мм			- 7-
емкостях		Цифровой код	-	-
ИК уровня нефти/	нефтепродукта	Цифровой код	-	-
в резервуаре				
ИК температуры нефти/нефтепродукта (сигналы от термопреобразователей сопротивления) ИК температуры других сред (сигналы от термопреобразователей сопротивления)		R - от 40 до 400 Ом	$\Delta = \pm \ 0.46 \ ^{0}\mathrm{C}$	-
			$\Delta = \pm 1,85 {}^{0}\mathrm{C}$	-
ИК температуры других сред (сигналы от термопар)		U от – 10 до 80 мВ	$\Delta = \pm 1,85 ^{0}\mathrm{C}$	-
ИК частоты следования импульсов		F	$\Delta = \pm 1$ Γιι	$\Delta = \pm 1 \Gamma$ ц
ИК количества импульсов		от 1 до 60000 Гц	$\Delta = \pm 1$ имп	$\Delta = \pm 1$ имп
ИК потенциала		U от 0 до 10 В от 0 до 5 В от - 10 до 10 В от - 5 до 5 В	$\gamma = \pm 0.25 \%$	$\gamma = \pm 0.10 \%$

Примечания: $-\gamma$ и Δ - приведенная и абсолютная погрешности соответственно;

[–] нормирующими значениями при определении приведенной погрешности ИК ввода аналоговых сигналов являются диапазоны контролируемых технологических параметров (приведены в таблице 5).

Таблица 4 – Пределы допускаемой приведенной погрешности ИК вывода (воспроизведения) аналоговых сигналов

Функциональное назначение ИК Диапазоны воспроизведени	, ,	Пределы допускаемой погрешности в исполнении	
	воспроизведения	с промежуточным преобразователем	без промежуточного преобразователя
Воспроизведение силы постоянного тока, мА	от 0 до 20 от 4 до 20	$\gamma = \pm 0.30 \%$	$\gamma = \pm 0.25 \%$
Воспроизведение напряжения постоянного тока, В	от – 10 до 10	$\gamma = \pm 0.30 \%$	$\gamma = \pm 0.25 \%$

Нормирующим значением при определении приведенной погрешности ИК вывода аналоговых сигналов является диапазон воспроизведения силы (напряжения) постоянного тока.

Таблица 5 – Диапазоны измерения и контроля технологических параметров (при подключении к комплексам внешних первичных измерительных преобразователей)

компискост внешних перви нивих измерительных пресор		
Наименование технологического параметра	Диапазон	
- избыточное давление, МПа	от 0 до 16 (с поддиапазонами)	
- перепад давления, МПа	от 0 до 10 (с поддиапазонами)	
- температура, °С	от - 150 до 1000 (с поддиапазонами)	
- расход, м ³ /ч	от 0,1 до 10500 (с поддиапазонами)	
- уровень, мм	от 0 до 23000 (с поддиапазонами)	
- загазованность воздуха, % НКПР	от 0 до 50	
- виброскорость, мм/с	от 0 до 30	
- частота следования импульсов, Гц	от 1 до 60000	
- количество импульсов	от 1 до 1000000	
- осевое смещение ротора, мм	от 0 до 5	
- сила тока, А	от 0 до 1000	
- напряжение, кВ	от 0 до 10	
- электрическая мощность, МВ-А	от 0 до 10	
- потенциал, В	от - 10 до 10 (с поддиапазонами)	

Примечание: комплексы являются проектно-компонуемыми изделиями; поэтому виды и диапазоны технологических параметров из приведенного в таблице перечня, измеряемые и контролируемые конкретным экземпляром комплекса, определяются заказом и вносятся в формуляр комплекса.

При подключении к комплексу внешних первичных измерительных преобразователей (ПИП) пределы допускаемой суммарной погрешности $ИK_{\Sigma}$ находятся как взятый с коэффициентом 1,1 корень квадратный из суммы квадратов предела допускаемой погрешности ИК ввода аналоговых сигналов комплексов (из таблицы 3) и предела допускаемой погрешности ПИП; при этом обе погрешности должны быть выражены в одинаковых елиницах.

Таблица 6 – Рекомендуемые метрологические характеристики подключаемых к комплексам внешних первичных измерительных преобразователей (ПИП)

bheming hepbi hibig hismephrenbhibig hipecopusoburesien (111111)		
	Пределы допускаемой	
Функциональное назначение ПИП	основной	
	погрешности ПИП	
ПИП ИК избыточного давления нефти/нефтепродуктов, сред	$\gamma = \pm 0.10 \%$	
вспомогательных систем (кроме давления воздуха)	γ = ± 0,10 /0	
ПИП ИК избыточного давления воздуха, перепада давления	$\gamma = \pm 0.4 \%$	
нефти/нефтепродуктов, перепада давления сред вспомогательных систем	$\gamma - \pm 0.470$	
ПИП ИК силы тока, напряжения, мощности	$\gamma = \pm 1.0 \%$	
ПИП ИК потенциала	$\gamma = \pm 0.30 \%$	
ПИП ИК виброскорости	$\gamma = \pm 10 \%$	
ПИП ИК частоты следования / количества импульсов	$\Delta = \pm 1$ Гц/ $\Delta = \pm 1$ имп	
ПИП ИК расхода	$\gamma = \pm 0.50 \%$	
ПИП ИК загазованности воздуха	$\Delta = \pm 5.0 \%$ HKTIP	
ПИП ИК осевого смещения ротора	$\Delta=\pm~0,10~{ m MM}$	
ПИП ИК уровня нефти/нефтепродуктов в резервуаре	$\Delta = \pm 3.0 \text{ mm}$	
ПИП ИК уровня жидкости во вспомогательных емкостях	$\Delta = \pm 10 \text{ mm}$	
ПИП ИК температуры нефти/нефтепродуктов	$\Delta = \pm 0,50$ °C	
ПИП ИК температуры других сред	$\Delta = \pm 2,0 ^{\circ}\text{C}$	

Рабочие условия эксплуатации комплексов

Знак утверждения типа

наносится на табличку шкафа ШКЦ и на титульные листы эксплуатационной документации типографским способом.

Комплектность средства измерений

Комплекс программно-технический микропроцессорной системы автоматизации нефтеперекачивающей станции "Шнейдер Электрик" -1 экз. Комплект ЗИП -1 комп. Методика поверки МП2064-0100-2015 -1 экз. Сервисное ПО (на компакт-диске) -1 экз. Комплект эксплуатационных документов -1 комп.

Поверка

осуществляется по документу МП2064-0100-2015"Комплексы программно-технические микропроцессорной системы автоматизации нефтеперекачивающей станции "Шнейдер Электрик". Методика поверки", утвержденному ФГУП "ВНИИМ им. Д.И. Менделеева" в октябре 2015 г.

Перечень эталонов, используемых при поверке:

- калибратор универсальный H4-7,предел 20 мA, \pm (0,004% Ix+0,0004% Iп);

предел 0,2 B, \pm (0,002% U_x +0,0005% U_n); предел 20 B, \pm (0,002% U_y +0,00025% U_n);

(Номер в ФИФ по ОЕИ 22125-01)

- магазин сопротивления P4831, диапазон от 10^{-2} до 10^6 Ом, кл. 0,02 (Номер в ФИФ по ОЕИ 6332-77);
- вольтметр универсальный цифровой GDM-78261,

предел 1 B, \pm ($0.0035U_x + 0.0005U_n$); предел 10 B, \pm ($0.0040U_x + 0.0007U_n$).

(Номер в ФИФ по ОЕИ 52669-13)

- генератор сигналов специальной формы AFG72125, от 1 м Γ ц до 25 М Γ ц, \pm 2·10⁻⁵; (Номер в ФИФ по ОЕИ 53065-13)
- частотомер электронно-счетный Ч3-85/3, от 0,1 Γ ц до100 М Γ ц, $\mathbf{d}_F = (\mathbf{d}_0 + \mathbf{d}_{3an} + 7 \times 10^{-9} / t_{cq}.)$ (Номер в ФИФ по ОЕИ 32359-06)

Знак поверки наносится на свидетельство о поверке и (или) в соответствующий раздел паспорта.

Сведения о методиках (методах) измерений

Методы измерений приведены в Руководстве по эксплуатации на комплексы программно-технические микропроцессорной системы автоматизации нефтеперекачивающей станции "Шнейдер Электрик" 4252-020-45857235-2014 РЭ.

Нормативные и технические документы, устанавливающие требования к комплексам программно-техническим микропроцессорной системы автоматизации нефтеперекачивающей станции "Шнейдер Электрик"

- 1. ГОСТ Р 8.596-2002 "ГСИ. Метрологическое обеспечение измерительных систем. Основные положения".
- 2. ГОСТ 8.022-91 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до 30 A.
- 3. ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы.
- 4. ГОСТ 8.129-2013 ГСИ. Государственная поверочная схема для средств измерений времени и частоты.
- 5. ТУ 4252-020-45857235-2014 "Программно-технический комплекс микропроцессорной системы автоматизации нефтеперекачивающей станций "Шнейдер Электрик". Технические условия" с изменением №3.

Изготовитель

ООО "АСК Инжиниринг"

ИНН 5262295047

Адрес: 603105, г. Нижний Новгород, Ошарская ул., д. 77а, П8

Тел./факс: (83130) 6-31-05 / (83130) 6-32-73

Испытательный центр

ГЦИ СИ ФГУП "ВНИИМ им.Д.И.Менделеева" Адрес: 190005, г. С.-Петербург, Московский пр. 19

Тел. (812) 251-76-01, факс (812) 713-01-14

E-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2016 г.