ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы внутритрубные ультразвуковой диагностики Pipeline Inspection Tool (PIT)

Назначение средства измерений

Системы внутритрубные ультразвуковой диагностики Pipeline Inspection Tool (PIT) (далее - системы) предназначены для одновременного обнаружения и измерений геометрических параметров и толщины контролируемых изделий.

Описание средства измерений

Принцип действия систем основан на методе активного акустического контроля. Электрические сигналы заданной частоты и амплитуды вырабатываются генератором импульсов системы и преобразуются в ультразвуковые колебания пьезоэлектрическими преобразователями. Сформированная ультразвуковая волна проникает в объект контроля через иммерсионную среду и, отражаясь от неоднородностей (границ дефектов, сварных швов) или границы раздела сред (поверхность контролируемого изделия), возвращается обратно. Отраженный эхо - импульсный сигнал трансформируется преобразователем в электрический сигнал и поступает на вход приемника системы. По времени распространения ультразвукового импульса в изделии от поверхности ввода ультразвуковых колебаний в объект контроля до границы дефекта или до границы раздела сред и обратно, измеряют глубину залегания дефекта и толщину контролируемого изделия.

В системах используются следующие методы акустического неразрушающего контроля: эхо - импульсный и теневой контроль совмещенными преобразователями.

Конструктивно системы представляет собой многоканальный прибор, основными частями которого являются: кольцо с пьезоэлектрическими преобразователями, тяговый блок, блок электропитания, электронный блок и блок управления (см. рисунок 1). Связь электронного блока и блока управления осуществляется по оптоволоконному кабелю.

Электронный блок представляет собой генератор/приемник УЗ импульсов, предназначен для обработки полученных сигналов и передачи их на блок управления.

Блок управления предназначен для управления режимами работы системы, хранения, отображения и передачи измеренных значений на внешние устройства.

Тяговый блок предназначен для привидения в движение системы.

Блок электропитания предназначен для обеспечения питания системы электрической энергией.

Контроль трубопроводов на обнаружение дефектов проводится при вращательнопоступательном перемещении кольца с пьезоэлектрическими преобразователями либо при поступательном передвижении неподвижного кольца с датчиками вдоль трубы.

Рисунок 1 - Общий вид систем внутритрубных ультразвуковой диагностики Pipeline Inspection Tool (PIT)

Опломбирование в целях несанкционированной настройки и вмешательства производится посредством нанесения защитной наклейки на блоки управления системы.

Программное обеспечение

Программное обеспечение «PitScanner», «PitMapper» (далее - ПО) разработано специально для систем и служит для управления их функциональными возможностями, а также для обработки и отображения результатов измерений.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационное наименование ПО	PitScanner	PitMapper
Номер версии (идентификационный номер ПО), не ниже	7.2	4.9
Цифровой идентификатор ПО	8E9875EB	04C9A9AD
Алгоритм вычисления цифрового идентификатора ПО	CRC32	CRC32

Защита программного обеспечения и измеренных данных от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» в соответствии с Р 50.2.077 – 2014.

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение характеристики
Максимальное количество акустических каналов	256
Диапазон амплитуды импульсов возбуждения, В	180 - 220
Допускаемое отклонение амплитуды, %	±5
Диапазон длительности зондирующих импульсов, нс	50 – 500
Допускаемое отклонение длительности зондирующих импульсов,	
%	±20
Время нарастания переднего фронта импульса, не более, нс	50
Диапазон частоты следования импульсов, Гц	100 - 10000
Диапазон регулировки усиления, дБ	0 - 42

Продолжение таблицы 2

Наименование характеристики	Значение характеристики	
Пределы допускаемой абсолютной погрешности измерений уста-	±(0,4+0,02 Nn) дБ, где Nn –	
новки усиления приемника системы в диапазоне от 0 до 42 дБ с	установленное усиление	
шагом 10 дБ	приемника, дБ	
Диапазон рабочих частот пьезоэлектрических преобразователей,		
МΓц	1 - 10	
Диапазон измерений толщины, мм	2,0-41,0	
Пределы допускаемой абсолютной погрешности измерений тол-	±(0,5+0,005·H) мм, где H -	
щины, мм	измеренное значение глуби-	
	ны залегания дефекта, мм	
Электропитание:		
- напряжение, В	400 (±10 %)	
- частота, Гц	50 – 60	
	трехфазная схема	
	подключения	
Габаритные размеры, (Ш \times Ø), не более, мм:		
- УЗ модуль	1000×1420	
Масса, не более, кг	400	
Диапазон рабочих температур, °С	от 0 до 45	
Срок службы, не менее, лет	10	

Знак утверждения типа

наносится на заднюю панель блока управления системы методом наклеивания и на титульный лист руководства по эксплуатации методом печати.

Комплектность средства измерений

Таблица 3

Наименование	Количество, ед.
Пьезоэлектрический преобразователь	64*
Одометр	1*
Толкатель (возможны различные исполнения)	1*
Компьютеры (блоки) управления, не менее	2*
Контейнер с комнатой управления	1
Соединительные кабели	1*
Трансформатор	1
Лебедка	1
Методика поверки МП АПМ 35-15	1
Руководство по эксплуатации	1

^{*-} может варьироваться в зависимости от заказа

Поверка

осуществляется в соответствии с документом МП АПМ 35-15 «Системы внутритрубные ультразвуковой диагностики Pipeline Inspection Tool (PIT). Методика поверки», утверждённым ООО «Автопрогресс–М» в декабре 2015 г.

Знак поверки наносится на свидетельство о поверке.

Перечень основных средств поверки (эталонов):

- осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$ Гц (Госреестр № 54989-13);
- генератор сигналов произвольной формы DG4102, диапазон частот 1 м Γ ц − 200 М Γ ц, П Γ ±(0,01·U $_{\text{уст}}$ + 2 мB), выходное напряжение 1 мB − 10 B (Госреестр № 56012-13);
- частотомер универсальный GFC-8270H, диапазон измерений частоты 0,01 Γ ц − 2,7 Γ Γ ц, $\Pi\Gamma \pm (10^{-6} + 1 \text{ ед.})$ (Госреестр № 19818-00);
- комплект образцовых мер толщины КМТ176М1-сталь, (0.2 100) мм, $\Pi\Gamma \pm 0.02$ мм.

Сведения о методиках (методах) измерений

Методика выполнения измерений с помощью систем внутритрубных ультразвуковой диагностики Pipeline Inspection Tool (PIT) приведена в документе: «Системы внутритрубные ультразвуковой диагностики Pipeline Inspection Tool (PIT). Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к системам внутритрубным ультразвуковой диагностики Pipeline Inspection Tool (PIT)

Техническая документация «Röntgen Technische Dienst B.V.» (RTD), Нидерланды.

Изготовитель

«Röntgen Technische Dienst B.V.» (RTD), Нидерланды

Delftweg 144, 3046 NC, P.O. Box 10065, 3004 AB Rotterdam, Netherlands

Тел: +31 10 2088208; факс: +31 10 4158022

E-mail: info@applusrtd.com

Заявитель

ООО «Апплюс РТД», г. Москва

ИНН 7709960780

109028, Россия, г. Москва, Хохловский пер. 13, стр. 1

Тел.: +7 (495) 625-09-50 доб.120; факс: +7 (495) 625-34-76

E-mail: Info.Russia@applusrtd.com

Испытательный центр

ООО «Автопрогресс-М»

123308, г. Москва, ул. Мневники, д. 3 корп. 1.

Тел.: +7 (495) 120-0350, факс: +7 (495) 120-0350 доб. 0

E-mail: <u>info@autoprogress-m.ru</u>

Аттестат аккредитации ООО «Автопрогресс-М» по проведению испытаний средств измерений в целях утверждения типа RA.RU.311195 от 30.06.2015 г.

Заместитель		
Руководителя Федерального		
агентства по техническому		
регулированию и метрологии		С.С. Голубев
	Мп	2016 г