ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

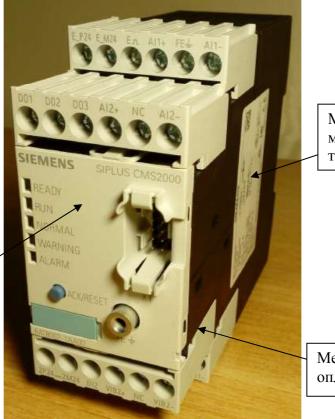
Системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS

Назначение средства измерений

Системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS (далее системы) предназначены для измерения в непрерывном режиме характеристик вибрации, а также других технологических характеристик.

Описание средства измерений

Принцип действия систем основан на измерении и обработке сигналов, поступающих от первичных преобразователей.


Системы позволяют проводить анализ и диагностику состояния машин и механизмов, основываясь на ГОСТ ИСО 10816-3-2002 «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях. Часть 3. Промышленные машины номинальной мощностью более 15 кВт и номинальной скоростью от 120 до 15000 мин⁻¹».

Системы SIPLUS CMS выпускаются в двух модификациях: SIPLUS CMS2000 и SIPLUS CMS4000, которые отличаются типом диагностического анализа и количеством измерительных каналов.

Модификация SIPLUS CMS2000 представляет собой расширяемую систему вибродиагностики и включает в себя двухканальный базовый модуль VIB SIPLUS CMS2000, акселерометр SIPLUS CMS2000 VIB-SENSOR S01 и два расширительных модуля SIPLUS CMS2000 VIB-MUX, подключаемых к базовому модулю и предназначенных для увеличения количества измерительных каналов. Базовый модуль VIB SIPLUS CMS2000 имеет два канала для подключения акселерометров и аналоговые каналы для подключения других типов преобразователей (датчиков). Модули SIPLUS CMS2000 VIB-MUX имеют до восьми измерительных каналов для подключения IEPE-акселерометров.

Модификация SIPLUS CMS4000 представляет собой диагностическую систему, предназначенную для мониторинга и контроля состояния механизмов и машин и позволяющую измерять и обрабатывать сигналы, поступающие от акселерометров и других типов преобразователей (датчиков). Модификация включает в себя три шестиканальных аналоговоцифровых преобразователя (далее - преобразователя) IFN AI, IFN AI-D и IFN VIB-A, которые отличаются типом входного сигнала, поступающего от первичного преобразователя (датчика). Система SIPLUS CMS4000 может включать в себя до 30 преобразователей IFN AI, IFN AI-D и IFN VIB-A в различном сочетании.

Внешний вид системы вибродигностики и мониторинга состояния оборудования SIPLUS CMS: модификации SIPLUS CMS2000 и SIPLUS CMS4000, приведены на рисунках 1 и 2. Внешний вид акселерометра SIPLUS CMS2000 VIB-SENSOR S01 приведен на рисунке 3.

Место нанесения маркировочной таблички

Место нанесения знака утверждения типа и знака поверки

Место опломбирования

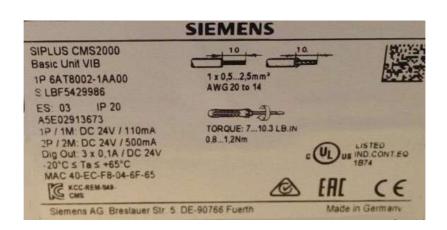


Рисунок 1 - Внешний вид системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS2000 и маркировочная табличка

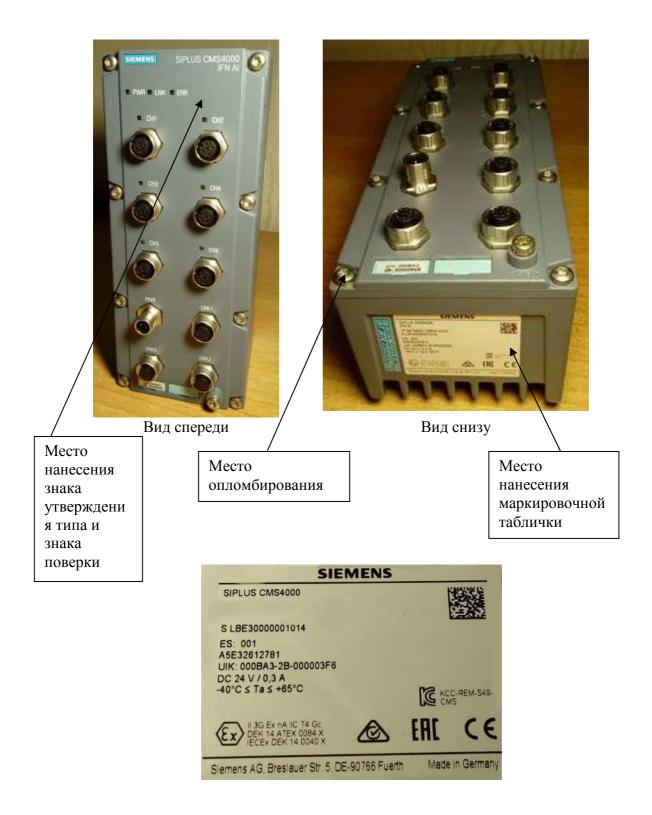


Рисунок 2 - Внешний вид системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS4000 и маркировочная табличка

Рисунок 3 – Внешний вид акселерометра SIPLUS CMS2000 VIB-SENSOR S01

Программное обеспечение

Программное обеспечение (ПО) систем вибродиагностики и мониторинга состояния оборудования SIPLUS CMS служит для обработки и визуализации информации, которая поступает от первичных преобразователей, хранения данных и построения методик анализа.

Конструкция СИ исключает возможность несанкционированного влияния на ПО СИ и измерительную информацию:

- отсутствует физический доступ к носителю информации;
- отсутствует программно-аппаратный интерфейс для изменения/замещения кода программы в процессе эксплуатации;
- реализован механизм защиты ПО от несанкционированного доступа. Идентификационные данные ПО представлены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	CMS X-Tools Professional
Номер версии (идентификационный номер) ПО	v. 4 (не ниже)
Цифровой идентификатор ПО	-
Другие идентификационные данные (если есть)	-

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует по Р 50.2.077-2014 уровню «высокий».

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение
SIPLUS CMS2000	
Диапазон измерений виброускорения для канала с акселерометром SIPLUS CMS2000 VIB-SENSOR S01, m/c^2	от 0,02 до 500
Диапазон входного постоянного напряжения для аналогового канала базового модуля VIB SIPLUS CMS2000,	
В	от минус 10 до плюс 10
Диапазон силы входного тока для аналогового канала	
базового модуля VIB SIPLUS CMS2000, мА	от 4 до 20
Диапазон рабочих частот, Гц	от 10 до 10000
Диапазон измерений виброускорения для аналогового канала при коэффициенте преобразования $10 \text{ мB/(m} \cdot \text{c}^{-2})$, м/c ²	от 0,1 до 1000
Диапазон измерения виброускорения для аналогового канала при коэффициенте преобразования $1 \text{ MA/(M} \cdot \text{c}^{-2})$, m/c^2	от 0,1 до 16

Продолжение таблицы 2

продолжение таолицы 2	
Наименование характеристики	Значение
Пределы основной относительной погрешности измерений	
виброускорения на базовой частоте 160 Гц канала с	
акселерометром SIPLUS CMS2000 VIB-SENSOR S01, %:	
базового модуля VIB SIPLUS CMS2000	±10
модуля SIPLUS CMS2000 VIB-MUX	±12
Неравномерность амплитудно-частотной характеристики	
(АЧХ) относительно базовой частоты 160 Гц для канала с	
акселерометром SIPLUS CMS2000 VIB-SENSOR S01, %, не	
более	±20
Пределы относительной погрешности измерений для	
аналогового канала базового модуля VIB SIPLUS CMS2000	
в диапазоне рабочих температур, %	±2
Пределы относительной погрешности измерений	
виброускорения для канала с акселерометром SIPLUS	
CMS2000 VIB-SENSOR S01 в диапазоне рабочих	
температур, %	±20
SIPLUS CMS4000	
Диапазоны входного постоянного напряжения для	
аналоговых каналов, В:	
преобразователя IFN AI	от минус 10 до плюс 10
преобразователя IFN AI-D	от минус 20 до плюс 20
преобразователя IFN VIB-A	от минус 30 до плюс 30
Диапазон входного постоянного напряжения каналов ІЕРЕ	
преобразователя IFN VIB-A, В	от минус 0,75 до плюс 0,75
Диапазон силы входного тока для аналоговых каналов и	
каналов ІЕРЕ, мА	от 4 до 20
Диапазоны измерений виброускорения (при коэффициенте	
преобразования $10 \text{ мB/(m} \cdot \text{c}^{-2})$), м/c^{2} :	
преобразователя IFN AI	от 0,01 до 1000
преобразователя IFN VIB-A (в зависимости от типа канала)	от 0,01 до 3000
	от 0,01 до 75
Диапазон измерений виброускорения преобразователей	
IFN AI и IFN VIB-A (при коэффициенте преобразования	
$1 \text{ mA/(m} \cdot \text{c}^{-2})), \text{ m/c}^{2}$	от 0,1 до 16
Диапазон измерений виброперемещения (при коэффициенте	0.01
преобразования 10 мВ/мкм) преобразователя IFN AI-D, мкм	от 0,01 до 2000
Диапазон измерений виброперемещения (при коэффициенте	0.1
преобразования 1 мА/мкм) преобразователя IFN AI-D, мкм	от 0,1 до 16
Пределы относительной погрешности измерений	
напряжения, силы тока и виброускорения преобразователя	.0.7
IFN AI в диапазоне рабочих температур (максимальная	$\pm 0,5$
частота вращения вала 96 кГц), %	
Пределы относительной погрешности измерения	
напряжения, силы тока и виброперемещения	.00
преобразователя IFN AI-D в диапазоне рабочих температур	± 0.8
(максимальная скорость вращения вала 96 кГц), %	

Продолжение таблицы 2

продолжение таолицы 2		
Наименование характеристики	Значение	
Пределы основной относительной погрешности измерений		
виброускорения каналов IEPE преобразователя IFN VIB-A		
(максимальная частота вращения вала 20 кГц) (в		
зависимости от канала), %	$\pm 6,6;\pm 1,1$	
Пределы основной относительной погрешности измерений		
виброускорения, напряжения и силы тока аналогового		
канала преобразователя IFN VIB-A (максимальная частота	±1	
вращения вала 1 кГц), %		
Пределы дополнительной относительной погрешности		
измерений виброускорения каналов IEPE преобразователя		
IFN VIB-А в рабочем диапазоне температур (в зависимости		
от канала), %/ °C	от минус 0,12 до плюс 0,12;	
	от минус 0,02 до плюс 0,01	
Пределы дополнительной относительной погрешности		
измерений виброускорения, напряжения и силы тока		
аналогового канала преобразователя IFN VIB-A в рабочем		
диапазоне температур, %/ °С	от минус 0,13 до плюс 0,83	
Нормальная область значений температур, °С	25±5	
Рабочие условия эксплуатации:		
диапазон температур, °С:		
акселерометра SIPLUS CMS2000 VIB-SENSOR S01	от минус 50 до плюс 120	
базового модуля VIB SIPLUS CMS2000 и модуля SIPLUS		
CMS2000 VIB-MUX	от минус 20 до плюс 65	
аналогово-цифровых преобразователей SIPLUS IFN AI;		
SIPLUS IFN AI-D и SIPLUS IFN VIB-A	от минус 40 до плюс 65	
Габаритные размеры, мм, не более:		
базового модуля VIB SIPLUS CMS2000 и модуля SIPLUS		
CMS2000 VIB-MUX	45×106×124	
акселерометра SIPLUS CMS2000 VIB-SENSOR S01	диаметр 22×52	
аналогово-цифровых преобразователей SIPLUS IFN AI;		
SIPLUS IFN AI-D и SIPLUS IFN VIB-A	86×210×87	
Масса, кг, не более:		
базового модуля VIB SIPLUS CMS2000	0,3	
модуля SIPLUS CMS2000 VIB-MUX	0,27	
акселерометра SIPLUS CMS2000 VIB-SENSOR S01	0,1	
аналогово-цифровых преобразователей SIPLUS IFN AI;		
SIPLUS IFN AI-D	1,23	
аналого-цифрового преобразователя SIPLUS IFN VIB-A	1,24	

Знак утверждения типа

наносится на корпус аналого-цифрового преобразователя системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS методом наклейки и на титульный лист руководства по эксплуатации методом наклейки или печати.

Комплектность средства измерений

Таблица 3

Наименование	Кол-во	Номер для заказа
Система вибродиагностики и мониторинга состояния		
оборудования SIPLUS CMS - Модификация SIPLUS		
CMS2000 в составе:		
- базовый модуль VIB SIPLUS CMS2000	1 шт.	6AT8 002-1AA00
- акселерометр SIPLUS CMS2000 VIB-SENSOR S01	1 шт.	6AT8 002-4AB00
Система вибродиагностики и мониторинга состояния		
оборудования SIPLUS CMS - Модификация SIPLUS		
CMS4000 в составе:		
- аналогово-цифровой преобразователь		
SIPLUS IFN AI	1 шт.	6AT8 000-1BB00-0XA0
- аналогово-цифровой преобразователь		
SIPLUS IFN AI-D	1 шт.	6AT8 000-1BB00-2XA0
- аналогово-цифровой преобразователь		
SIPLUS IFN VIB-A	1 шт.	6AT8 000-1B B00-4XA0
Руководство по эксплуатации	1 экз.	
Методика поверки	1 экз.	

Поверка

осуществляется в соответствии с документом МП 63832-16 «Системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS». Методика поверки», утвержденным Φ ГУП «ВНИИМС» 26.02.2016 г.

Основные средства поверки: поверочная виброустановка 2-го разряда по ГОСТ 8.800-2012, генератор сигналов сложной формы со сверхнизким уровнем искажений DS360 (Госреестр СИ № 45344-10); мультиметр цифровой 34410A (Госреестр СИ № 47717-11); источник питания постоянного тока АКИП-1112 (Госреестр СИ № 39934-08).

Знак поверки наносится на свидетельство о поверке и, если позволяют условия эксплуатации, на корпус системы вибродиагностики и мониторинга состояния оборудования SIPLUS CMS методом наклейки.

Сведения о методиках (методах) измерений

1 ГОСТ ИСО 10816-3-2002 «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях. Часть 3. Промышленные машины номинальной мощностью более 15 кВт и номинальной скоростью от 120 до 15000 мин $^{-1}$ ».

2 ГОСТ 7919-1-2002 «Вибрация. Контроль состояния машин по результатам измерений вибрации на вращающихся валах. Общие требования».

Нормативные и технические документы, устанавливающие требования к системам вибродиагностики и мониторинга состояния оборудования SIPLUS CMS

1 Техническая документация фирмы «Siemens AG», Германия.

Изготовитель

Фирма «Siemens AG», Германия

Адрес юр.: Breslauer Str. 5 DE-90766 Fuerth, Germany

Адрес факт.: Gleiwitzer Strasse 555, 90475 Nurberg, Germany

Заявитель

Общество с ограниченной ответственностью «Сименс» (ООО «Сименс»)

ИНН 7725025502

Адрес: 115084, Москва, ул. Большая Татарская, дом 9

Тел./факс (495) 737-10-00; 737-10-01

E-mail: <u>iadt.ru@siemens.com</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

М.п.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.C.	Голу	бев

«____» _____2016 г.