ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

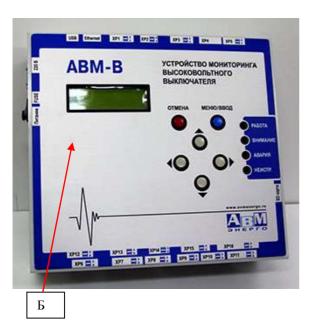
Устройства мониторинга высоковольтного выключателя АВМ-В

Назначение средства измерений

Устройства мониторинга высоковольтного выключателя ABM-B (далее - устройства ABM-B), предназначены для измерения значений силы переменного и постоянного тока, а также для измерения сигналов электрического сопротивления (от термопреобразователей сопротивления по ГОСТ 6651-2009) и преобразования их в значения температуры.

Описание средства измерений

Принцип действия устройств ABM-В основан на измерении и преобразовании аналоговых сигналов (силы переменного и постоянного тока, электрического сопротивления) в пропорциональные цифровые с последующей обработкой с помощью программного обеспечения.


После обработки входящих сигналов устройства ABM-В выводят в доступном для пользователя виде информацию основных параметров выключателей класса напряжения от 110 до 1150 кВ. В случае превышения, установленных предельных уровней заданных параметров выключателя устройства ABM-В выдают предупредительную или аварийную сигнализацию в зависимости от типа параметра.

Устройства ABM-В размещены в прямоугольных металлических корпусах и имеют разъемы для входящих и выходящих сигналов. Все разъемы имеют маркировку, определяющую их назначение. Для ручного управления на лицевой панели устройства ABM-В расположены кнопки. Так же, имеется встроенный ЖК дисплей.

Общий вид устройства АВМ-В приведен на рисунке 1.

Для предотвращения несанкционированного доступа к внутренним частям устройства ABM-В предусмотрена пломбировка одного из винтов в нижней части.

Знак поверки наносится на корпус устройства АВМ-В.

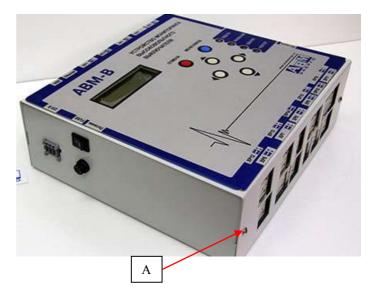
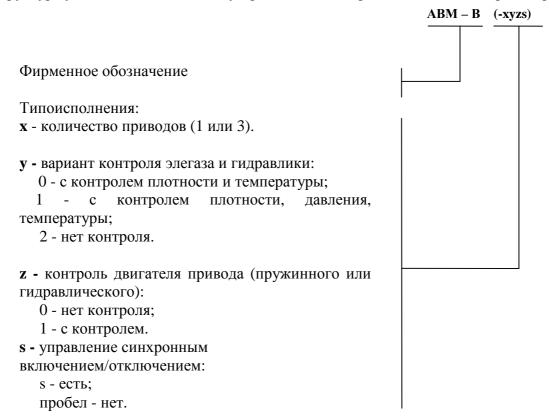



Рисунок 1 - Общий вид устройства ABM-B Место пломбировки от несанкционированного доступа (A) и нанесения знака поверки (Б)

Структура условного обозначения устройства мониторинга АВМ-В и его расшифровка:

Программное обеспечение

В устройствах ABM-В используется программное обеспечение (далее - ПО), решающее задачи автоматического накопления, обработки, хранения и отображения измерительной информации. Идентификационные данные ПО приведены в таблице 1.

ПО устройств ABM-В хранится в микросхемах энергонезависимой памяти, запаянных на печатной плате. Конструкция устройств ABM-В исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Таблица 1 - Идентификационные данные программного обеспечения устройств АВМ-В

Идентификационные данные ПО	ABM-B ver. 006Сен2013.hex
Идентификационное наименование ПО	ABM-B
Номер версии (идентификационный номер) ПО	ver. 006
Цифровой идентификатор ПО	OxADF39C5B

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014. Защита ΠO от несанкционированного доступа и предотвращения от записи переменных или внесения активных команд обеспечивается парольным словом.

Метрологические и технические характеристики приведены в таблице 2.

Таблица 2 - Метрологические и технические характеристики устройств АВМ-В

Таолица 2 - Метрологические и технические характеристики устроиств АВМ-В		
Параметр	Значения	
1 Параметры цепей питания:		
- напряжение переменного тока частотой 50 Гц, В	от 187 до 242	
- напряжение постоянного тока, В	от 217 до 330	
- потребляемая мощность, Вт, не более	30	
2 Параметры измерения силы переменного тока промышленной	30	
частоты:		
- номинальные значения I _{ном} , А	1 или 5	
	$(0.5 - 4) \cdot I_{HOM}$	
- диапазон допустимых значений, А	(0,5 - 4)· I _{HOM}	
- пределы допускаемой основной относительной погрешности	13.0	
измерения силы переменного тока, %	±3,0	
3 Диапазон измерений электрического сопротивления в	от минус 50 до	
температурном эквиваленте (в соответствии с типом HCX Pt100	плюс 100	
по ГОСТ 6651-2009), °С (Ом)	(от 76,33 до 123,24)	
- число каналов измерения	5	
- пределы допускаемой основной абсолютной погрешности		
измерения электрического сопротивления в температурном	.10	
эквиваленте, °С	±1,0	
4 Параметры измерения силы переменного тока промышленной		
частоты, амплитудные значения, поступающего на токовый		
преобразователь, выполненный на основе датчика Холла:	2701725	
- диапазон измеряемых значений, А	от 0,1 до 5	
- пределы допускаемой основной относительной погрешности	.20	
измерения силы переменного тока, %	±2,0	
5 Параметры измерения силы постоянного тока, поступающего на		
токовый преобразователь, выполненный на основе датчика Холла: - диапазон измеряемых значений, А	от 0,1 до 5	
- диапазон измеряемых значении, А - пределы допускаемой основной относительной погрешности	01 0,1 до 3	
измерения силы постоянного тока, %	±2,0	
1	±2,0	
6 Параметры измерения силы постоянного тока, поступающего на		
встроенный преобразователь: - диапазон измеряемых значений, мА	от 4 до 20	
	01 4 до 20	
- пределы допускаемой основной относительной погрешности	+0.5	
измерения силы постоянного тока, % 7 Стойкость к механическим воздействиям по ГОСТ 17516.1-90	±0,5 M40	
8 Нормальные условия применения по ГОСТ 22261-94:	IVI4U	
	от плюс 15 до плюс 25	
температура окружающей среды, °С	от 30 до 80	
относительная влажность воздуха, % атмосферное давление, кПа	от 84 до 106	
9 Рабочие условия применения по ГОСТ 22261-94:	01 04 д0100	
	от минус 10 до плос 55	
температура окружающей среды, °С	от минус 10 до плюс 55 90	
относительная влажность воздуха при t = 30 °C, %	90 от 84 до106	
атмосферное давление, кПа	01 04 Д0100	

Параметр	Значения
10 Дополнительная погрешность от влияния температуры в	
пределах рабочих условий применения не более пределов	
основной погрешности	
11 Наработка на отказ, ч, не менее	50000
12 Средний срок службы, лет, не менее	20
13 Габаритные размеры (В'Ш'Г), мм, не более	310×280×95
14 Масса, кг, не более	5

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 3 - Комплектность

Наименование	Количество	Примечание
Устройство АВМ-В	1 шт.	
Специализированное программное обеспечение	1 шт.	на жестком носителе CD-ROM/DVD-ROM
Руководство по эксплуатации	1 экз.	
Методика поверки	1 шт.	

Поверка

осуществляется по документу МП 63923-16 «Устройства мониторинга высоковольтного выключателя ABM-B. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 08.02.2016 г.

Перечень основных средств поверки:

- 1 Вольтметр универсальный цифровой GDM-78255A (Госреестр № 38428-08);
- 2 Магазин сопротивления измерительный МСР-60М (Госреестр № 2751-71);
- 3 Комплекс программно-технический измерительный РЕТОМ[™]-51 (Госреестр № 26975-04);

Знак поверки наносится в виде наклейки со штрих-кодом на корпус устройства и на свидетельство о поверке в виде оттиска клейма поверителя.

Сведения о методиках (методах) измерений

приведены в руководстве по эксплуатации.

Нормативные документы, устанавливающие требования к устройствам мониторинга высоковольтного выключателя АВМ-В

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

Изготовитель

Общество с ограниченной ответственностью «АВМ-Энерго»

(ООО «АВМ-Энерго»), г. Москва

Адрес: 111024, Россия, г. Москва, Кабельная 2-я ул., д. 2, стр. 9

Тел./факс: +7 (495) 673-81-47 E-mail: <u>info@avmenergo.ru</u>

ИНН 7722785400

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2016 г.