ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500 кВ «Шагол» в части КВЛ 220 кВ «Челябинская ГРЭС - Шагол II цепь»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500 кВ «Шагол» в части КВЛ 220 кВ «Челябинская ГРЭС - Шагол II цепь» (далее - АИИС КУЭ), предназначена для измерения активной и реактивной электрической энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень состоит из измерительных трансформаторов тока (далее - TT) класса точности 0,2S по ГОСТ 7746-2001, измерительных трансформаторов напряжения (далее - TH) класса точности 0,5 по ГОСТ 1983-2001, счетчика активной и реактивной электроэнергии типа А1800 класса точности 0,2S по ГОСТ Р 52323-05 в части активной электроэнергии и класса точности 0,5 по ГОСТ Р 52425-05 в части реактивной электроэнергии, вторичных электрических цепей и технических средств приема - передачи данных.

Второй уровень - информационно-вычислительный комплекс электроустановки (далее - ИВКЭ), созданный на базе устройств сбора и передачи данных (далее - УСПД) типа RTU-325 (Рег. № 37288-08, зав. № 000622), устройства синхронизации системного времени (далее - УССВ) и коммутационного оборудования.

УСПД типа RTU-325 обеспечивает сбор данных со счетчиков, расчет (с учетом коэффициентов трансформации TT и TH) и архивирование результатов измерений электрической энергии в энергонезависимой памяти с привязкой ко времени, передачу этой информации в информационно-вычислительный комплекс (далее - ИВК). Полученная информация накапливается в энергонезависимой памяти УСПД. Расчетное значение глубины хранения архивов составляет не менее 35 суток. Точное значение глубины хранения информации определяется при конфигурировании УСПД.

Третий уровень - ИВК обеспечивает выполнение следующих функций:

- сбор информации от ИВКЭ (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базах данных серверов ПАО «Федеральная Сетевая Компания Единой Энергетической Системы» (ПАО «ФСК ЕЭС») не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии (далее OPЭ).

Третий уровень - информационно-вычислительный комплекс (далее - ИВК), который входит в Систему автоматизированную информационно-измерительную коммерческого учета электрической энергии Единой национальной электрической сети (далее - АИИС КУЭ ЕНЭС) (Рег. №. 59086-14).

ИВК включает в себя каналообразующую аппаратуру, центры сбора и обработки данных (далее - ЦСОД), автоматизированные рабочие места (APM), СОЕВ.

Для работы с АИИС КУЭ на уровне подстанции предусматривается организация АРМ подстанции.

Измерительные каналы (далее - ИК) АИИС КУЭ включают в себя первый, второй и третий уровни АИИС КУЭ.

Первичные фазные напряжения преобразуются токи И измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Первичный ток в счетчиках измеряется с помощью измерительных трансформаторов тока, имеющих малую линейную и угловую погрешность в широком диапазоне измерений. В цепи трансформаторов тока установлены шунтирующие резисторы, сигналы с которых поступают на вход измерительной микросхемы. Измеряемое напряжение каждой фазы через высоколинейные резистивные делители подается непосредственно на измерительную микросхему. Измерительная микросхема осуществляет выборки входных сигналов токов и напряжений по каждой фазе, используя встроенные аналого-цифровые преобразователи, и выполняет вычисления. С выходов измерительной микросхемы на микроконтроллер поступают интегрированные по времени сигналы активной и реактивной энергии. Микроконтроллер осуществляет дальнейшую обработку полученной информации и накопление данных в энергонезависимой памяти, а также микроконтроллер осуществляет управление отображением информации на ЖКИ, выводом данных по энергии на выходные импульсные устройства и обменом по цифровому интерфейсу. Измерение максимальной мощности счетчик осуществляет по заданным видам энергии (активная и реактивная). Усреднение мощности происходит на интервалах, длительность которых задается программно.

УСПД автоматически проводит сбор результатов измерений и состояние средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

ИВК АИИС КУЭ ЕНЭС осуществляет опрос уровня ИВКЭ последовательноциклическим способом. Данные по наземным сетям связи операторов (на основе собственных и арендованных цифровых каналов связи) поступают на соответствующие узлы передачи данных операторов, размещенных на ММТС-9, г. Москва. Далее данные по каналу единой цифровой сети связи энергетики (далее - ЕЦССЭ) поступают на ЦСОД Исполнительного аппарата ПАО «ФСК ЕЭС» (далее ЦСОД ИА ПАО «ФСК ЕЭС») для последующей обработки, хранения и передачи смежным субъектам ОРЭМ, филиалу ОАО «СО ЕЭС» и ИАСУ КУ ОАО «АТС». Связь организована по дуплексным каналам, данные от ЦСОД ИА ПАО «ФСК ЕЭС» к уровню ИВКЭ поступают в обратном порядке.

В состав АИИС КУЭ входит СОЕВ, выполняющая законченную функцию измерений времени и формируется на всех уровнях АИИС КУЭ. СОЕВ включает в себя радиосервер точного времени типа РСТВ-01, ИВК, УСПД, счетчики электрической энергии.

Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет УСПД, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и УСПД на величину более ± 2 с.

Корректировка часов УСПД выполняется автоматически от сервера БД ИВК АИИС КУЭ ЕНЭС. Корректировка часов УСПД выполняется с погрешностью, не более ± 1 с.

На ЦСОД ИА ПАО «ФСК ЕЭС» установлен радиосервер точного времени типа РСТВ-01 (Рег. № 40586-12). РСТВ-01 расположен в серверных стойках ЦСОД. РСТВ-01 автоматически выполняет контроль времени в ЦСОД, корректировка часов ЦСОД выполняется с погрешностью, не более ± 1 с.

При длительном нарушении работы канала связи между УСПД и счетчиками, время счетчиков корректируется от переносного инженерного пульта. При снятии данных с помощью переносного инженерного пульта через оптический порт счётчика производится автоматическая подстройка часов опрашиваемого счётчика.

СОЕВ обеспечивает корректировку времени ИК АИИС КУЭ с точностью не хуже ± 5.0 с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и ИВК отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

Таблица 1 - Идентификационные данные СПО АИИС КУЭ ЕНЭС, установленного в ИВК АИИС КУЭ ЕНЭС

Идентификационные признаки	Значение					
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС					
Номер версии (идентификационный номер) ПО	1.0					
Цифровой идентификатор ПО	d233ed6393702747769a45de8e67b57e					
Алгоритм вычисления цифрового идентификатора ПО	MD5					
Примечание - Алгоритм вычисления цифрового идентификатора ПО - MD5						
Хэш сумма берется от склейки файлов: DataServer.exe, DataServer_USPD.exe						

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2 нормированы с учетом Π O.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав первого уровня ИК АИИС КУЭ и метрологические характеристики ИК приведены в таблице 2.

Таблица 2 - Состав первого уровня ИК и метрологические характеристики

Измери	ительный анал	Измерительные компоненты							Метрологические характеристики ИК					
Номер ИК	Наименование объекта учета, диспетчерское наименование присоединения		Вид СИ, класс точности , коэффициент трансформации, № Госреестра СИ или свидетельства о поверке	Обозначение, тип		Заводской номер	$ m K_{TT} \cdot m K_{TH} \cdot m K_{C4}$	Наименование измеряемой величины	Вид энергии	Границы интервала основной относительной погрешности измерений, (±d), %, при доверительной вероятности Р=0,95	Границы интервала относительной погрешности измерений, (±d), %, в рабочих условиях, при доверительной вероятности P=0,95			
1	2		3		4	5	6	7	8	9	10			
	КВЛ 220 кВ Челябинская ГРЭС - Шагол II цепь	Счетчик ТН ТТ	Kt = 0,2S Ktt = 1000/1 № 56255-14 Kt = 0,5 Kth = 220000/√3/100/√3	A	ТВ-ЭК	15-33760		Энергия активная, $W_{ m P}$ Энергия реактивная, $W_{ m Q}$	J					
				В	ТВ-ЭК	15-33759								
45				С	ТВ-ЭК	15-33758								
				Α	НКФ-220-58 У1	1478682								
				В	НКФ-220-58 У1	1478738								
			H	H	ябин II це —— ТН	ябин II це	№ 14626-95		1478684	000	0000	вная явна		
			KT = 0,5 KTH = $220000/\sqrt{3}/100/\sqrt{3}$	A	НКФ-220-06	1515785	2200000	эргия акт лгия реак	Активная Реактивная	±0,8	±2,2			
				В	НКФ-220-06	1515786				±1,6	±2,0			
			№ 41878-09			Энє		,						
			Кт = 0,2S/0,5 Ксч = 1 № 36697-12		СЭТ-4ТМ.03М	0811152150		(*)						

Примечания:

- 1. В Таблице 2 в графе «Границы интервала относительной погрешность измерений, (±d), %, в рабочих условиях, при доверительной вероятности P=0,95» приведены границы интервала погрешности результата измерений посредством ИК при доверительной вероятности P=0,95, cosφ=0,5 (sinφ=0,87), токе ТТ, равном 2 % от Іном и температуре окружающего воздуха в месте расположения счетчика электроэнергии от плюс 15 до плюс 30 °C.
- 2. Нормальные условия эксплуатации:

для ТТ и ТН:

- параметры питающей сети: напряжение (220±4,4) В; частота (50±0,5) Гц;
- параметры сети: диапазон напряжения $(0.95 1.05)U_{H1}$; сила тока 1,0 Іном; коэффициент мощности cosj (sinj) 0,87(0,5); частота (50±0,5) Γ ц;
- температура окружающего воздуха: (20±5) °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100±4) кПа.

Для электросчетчиков

- параметры питающей сети: напряжение (220±4,4) В; частота (50±0,5) Гц;
- параметры сети: диапазон напряжения $(0.99 1.01)U_{\text{H}}$, сила тока 1,0 Іном; коэффициент мощности cosj (sinj) 0,87(0,5); частота (50 \pm 0,5) Γ ц;
- температура окружающего воздуха: (23±2) °С;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100±4) кПа.
- 3. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения $(0.9 1.1)U_{\rm H1}$; диапазон силы первичного тока $(0.01 1.0)I_{\rm H1}$; диапазон коэффициента мощности cosį (sinį) 0.5 1.0 (0.6 0.87); частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха от минус 40 до плюс 35 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100±4) кПа.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения $(0.9 1.1)U_{\rm H2}$; диапазон силы вторичного тока $(0.02 \ (0.01 \ \rm npu \ cos\phi=1) 1.0)I_{\rm H2}$; диапазон коэффициента мощности cosj (sinj) $0.5 1.0 \ (0.6 0.87)$; частота $(50\pm0.5)\ \Gamma$ ц;
- магнитная индукция внешнего происхождения 0,5 мТл;
- температура окружающего воздуха плюс 15 до плюс 30 °C;
- относительная влажность воздуха (40 60) %;
- атмосферное давление (100±4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
- температура окружающего воздуха от плюс 15 до плюс 30 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100±4) кПа.
- 4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные, утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ: для счетчиков типа СЭТ-4ТМ.03М не менее 120000 ч; среднее время восстановления работоспособности 168 ч;
- УСПД среднее время наработки на отказ не менее 70 000 ч., среднее время восстановления работоспособности 24 ч.;
- сервер среднее время наработки на отказ не менее 45000 ч, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;

В журнале событий счетчика фиксируются факты:

- параметрирование;
- пропадания напряжения;
- коррекции времени.

В журнале событий УСПД фиксируются факты:

- параметрирование;
- пропадания напряжения;
- коррекции времени в счетчике и сервере;
- пропадание и восстановление связи со счетчиком;
- выключение и включение сервера.

Защищённость применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

- выводы измерительных трансформаторов тока;
- электросчётчика;
- испытательной коробки;
- УСПД;

защита на программном уровне информации при хранении, передаче, параметрирование:

- пароль на счетчике;
- пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков типа СЭТ-4ТМ.03М не менее 45 суток;
 - ИВКЭ результаты измерений, состояние объектов и средств измерений не менее 45 суток;
 - ИВК результаты измерений, состояние объектов и средств измерений не менее 3,5 лет.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии подстанции 500 кВ «Шагол» в части КВЛ 220 кВ «Челябинская ГРЭС - Шагол II цепь».

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблицы 3 - Комплектность АИИС КУЭ

Наименование	Количество (шт.)		
Трансформаторы тока ТВ-ЭК	3		
Трансформаторы напряжения НКФ-220-58 У1	3		
Трансформаторы напряжения НКФ-220-06	3		
Счетчик электрической энергии трехфазный многофункциональный СЭТ-4TM.03M	1		
Устройства сбора и передачи данных RTU-325	1		
ИВК АИИС КУЭ ЕНЭС			
Радиосервер точного времени РСТВ-01			
СПО АИИС КУЭ ЕНЭС			
Переносной инженерный пульт на базе Notebook			
Формуляр			
Методика поверки			

Поверка

осуществляется по документу МП 64030-16 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции $500~\rm kB$ «Шагол» в части КВЛ $220~\rm kB$ «Челябинская ГРЭС - Шагол II цепь». Методика поверки», утвержденному ФГУП «ВНИИМС» в марте $2016~\rm f.$

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков типа СЭТ-4ТМ.03М в соответствии с документом «методика поверки ИЛГШ.411152.145РЭ1 являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ». Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;

- УСПД RTU-325 по документу «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки. ДЯИМ.466.453.005МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.:
- ИВК АИИС КУЭ ЕНЭС в соответствии с документом МП 59086-14 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС. Методика поверки», утвержденному ГЦИ СИ ФБУ «Пензенский ЦСМ» 10 ноября 2014 г.;
- РСТВ-01 документу «Радиосерверы точного времени РСТВ-01. Методика поверки» ПЮЯИ.468212.039МП, утвержденному ФГУП «ВНИИФТРИ» 30.11.11 г.
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), Per. № 27008-04;
- переносной компьютер с СПО и оптический преобразователь для работы со счетчиками АИИС КУЭ и с СПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до 60 °C, дискретность 0.1 °C; диапазон измерений относительной влажности от 10 % до 100 %, дискретность 0.1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 мТл до 19,99 мТл.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электроэнергии и мощности с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии подстанции 500 кВ «Шагол» в части КВЛ 220 кВ «Челябинская ГРЭС - Шагол II цепь», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500 кВ «Шагол» в части КВЛ 220 кВ «Челябинская ГРЭС - Шагол II цепь»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Публичное акционерное общество «Федеральная сетевая компания Единой энергетической системы» (ПАО «ФСК ЕЭС»)

ИНН 4716016979

Юридический (почтовый) адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Тел./Факс: +7 (495) 710-93-33 / (495) 710-96-55

Заявитель

Общество с ограниченной ответственностью «Средневолжская Инжиниринговая Компания» (ООО «СВИК»)

ИНН 6319179949

Юридический/почтовый адрес: 443008, Россия, г. Самара, тупик Томашевский, д. 3а, офис 303

Тел./факс: +7 (846) 246-03-27

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2016 г.