ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители распределения температуры волоконно-оптические WELL.DONE

Назначение средства измерений

Измерители распределения температуры волоконно-оптические WELL.DONE моделей OTS3 и LHD3 (далее - измерители) предназначены для измерения температуры вдоль волоконно-оптического кабеля, в том числе при полном погружении в нефтяных, газоконденсатных и других скважинах, с целью измерения градиента температуры вдоль профиля скважины и записи термограмм.

Описание средства измерений

Принцип действия измерителя основан на измерении отраженных оптических сигналов от внутренней структуры оптического волокна (брэгговских решеток), через промежутки, задаваемые временным интервалом по всей длине кабеля с последующим преобразованием в значения, эквивалентные измеряемой температуре, и передаче информации посредством интерфейса Ethernet/USB контроллера на компьютер.

Измеритель состоит из волоконно-оптических кабелей, конструктивно выполненных в трехслойном цельнометаллическом корпусе, и контроллера. Волоконно - оптический кабель представляет собой оптический световод двух типов одномодовый (SM) и многомодовый (MM). Существует возможность программно задать расстояние между измерительными точками. Контроллер включает в себя оптический квантовый генератор (лазер) и оптический приемник, который принимает излучение лазера, отраженное от каждой из измерительных точек, с последующим преобразованием сигнала в значения температуры. К контроллеру может быть подключено до 16 волоконно - оптический кабелей.

Программное обеспечение контроллера позволяет оценить распределение температуры вдоль кабеля (температурный профиль), а также временные и локальные изменения профиля в зависимости от максимальной или минимальной температуры, кривой температуры и локальных дифференциальных критериев для активации систем предварительного оповещения или контроля. Программное обеспечение контроллера может группировать информацию от точек, расположенных по всей длине волоконно-оптического кабеля, в зоны (число зон может достигать 1000) с различным диапазоном заданных пользователем расстояний. Пользователь может выбирать установки параметров активации для каждой зоны. Показания температуры в рамках зоны будут оцениваться в соответствии с установками параметров активации для такой зоны.

Измерители имеют модели OTS3 и LHD3, которые различаются функциональной принадлежностью: OTS3 - для измерения распределения температуры вдоль волоконно - оптического кабеля, LHD3 - для измерения распределения температуры вдоль волоконно - оптического кабеля с целью обнаружения пожара и имеют различные наборы индикаторов оповещения. Модификации моделей OTS3-a-b-c-d, OTS3S-a-b-c-d, LHD3-a-b-c-d, LHD3S-a-b-c-d, где а - максимальное измеряемое расстояние на канал в сотнях метров (а <= 400), b - диаметр волокна (b <= 62), c - количество оптических каналов, d - опционально взрывозащита ExT3/ExT4.

Рисунок 1 - Внешний вид волоконно - оптического кабеля и контроллера

Программное обеспечение

Измеритель функционирует под управлением встроенного специального программного обеспечения, которое является его неотъемлемой частью. Программное обеспечение осуществляет преобразование оптического сигнала в значения измеряемой температуры, оценку распределения температуры вдоль кабеля, их временные и локальные изменения в зависимости от максимальной или минимальной температуры для активации систем оповещения, функции диагностики состояния волоконно-оптического кабеля, передачи (Ethernet/USB), хранения (2 Γ 6 + 16 Γ 6 карта памяти) и представления измерительной информации по коммуникационным протоколам MODBUS, XML (PRODML/WITSML, LAS или OPC по запросу).

Также имеется автономное ПО «Charon3» для персонального компьютера, которое позволяет дистанционно управлять процессом измерений, может сохранять полученные данные в базе данных, визуализировать их и использовать для последующей обработки и моделирования тепловых систем и при помощи которого можно определить версию встроенного ПО измерителя.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение		
Тип ПО	Встроенное	Внешнее	
Идентификационное наименование ПО	-	Charon3	
Номер версии (идентификационный номер) ПО	1.2.0.1	не ниже 3.2.2.0	
Цифровой идентификатор ПО	недоступен	-	

Уровень защиты программного обеспечения от преднамеренных или непреднамеренных изменений, соответствует уровню «средний» по P50.2.077-2014.

Влияние программного обеспечения учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Основные метрологические и технические характеристики измерителей приведены в таблице 2.

Таблица 2

Наименование характеристики	Значение характеристики	
Диапазон измерений температуры*, °С	от минус 60 до плюс 400	
Пределы допускаемой основной абсолютной по-	±0,5	
грешности измерений температуры, °С		
Пределы допускаемой дополнительной абсолютной		
погрешности измерений температуры на 10 °C в	±0,25	
диапазоне рабочей температуры контроллера от		
минус 10 до плюс 17°C и от 27 до 60°C, °C		
Наименьший разряд цифрового кода отсчетного		
устройства в режиме измерений	0,01	
Расстояние между заданными измерительными	1 или по заказу (0,25; 0,5)	
точками в кабеле, м	1 или по заказу (0,23, 0,3)	
Рабочая длина волны лазера, нм	1550	
Минимальное время измерения, с	5	
Количество оптических каналов	1, 2, 4, 6, 8, 12, 16 (по заказу)	
(подключаемых кабелей)		
Оптический разъем	E2000 / APC	
Интерфейс связи	Ethernet TCP / IP (2x), RS232, USB	
Напряжение постоянного тока, В	от 12 до 48	
Напряжение питания переменным током, В	от 100 до 240	
частота, Гц	от 47 до 63	
Потребляемая мощность, В:А	90	
Габаритные размеры контроллера, мм, не более	$131\times483\times338$	
диаметр кабеля, мм, не более	6,4	
Масса контроллера, кг, не более	13	
Длина волоконно - оптического кабеля, км	SM: 5, 10, 15, 20, 25, 30	
	MM: 2, 4, 6, 8, 10, 12, 16, 20, 25, 30	

Наименование характеристики	Значение характеристики		
Условия эксплуатации:			
- диапазон температуры окружающей среды, °С	от минус 10 до плюс 60		
- относительная влажность воздуха, %	от 5 до 95 (без конденсации)		
- диапазон атмосферного давления, кПа	от 84 до 105		
Максимально допустимое внешнее давление на ка-	138		
бель, МПа			
Электромагнитная совместимость	В соответствии со стандартом		
	BS EN 61326-1, EN 50130-4, EN 55011		
	EN 61000-6-2,3,-4-2,3,4,5,6,8,11-3-2,3		
	FCC 47 CFR Ch.1 part 15		
Наработка на отказ, ч	68000		
Средний срок службы, лет	20		
* Указан максимальный диапазон измерений температуры световодом, который нормируется			

^{*} Указан максимальный диапазон измерений температуры световодом, который нормируется допускаемыми пределами рабочей температуры изоляции в соответствии с ее маркировкой.

Знак утверждения типа

наносится на титульный лист эксплуатационной документации типографическим способом и на лицевую панель контроллера.

Комплектность средства измерений

Таблица 3

Наименование	Обозначение	Количество
Измеритель	OTS3-a-b-c-d (OTS3S-a-b-c-d, LHD3-a-b-c-d, LHD3S-a-b-c-d)	1 шт.
Волоконно-оптический кабель		1 шт.
Программное обеспечение	Charon3	1 CD-диск
Руководство по эксплуатации	«Измерители распределения температуры волоконно-оптические WELL.DONE моделей ОТS3 и LHD3. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ»	1 экз.
Инструкция по монтажу	«Инструкция по монтажу оборудования. Контроллеры серии ОТS3 / LHD3»	1 экз.
Методика поверки	МП 2411- 0127 - 2016	1 экз.

Поверка

осуществляется по документу МП 2411-0127-2016 «Измерители распределения температуры волоконно-оптические WELL.DONE. Методика поверки», утвержденному Φ ГУП «ВНИИМ им. Д.И. Менделеева» 10 марта 2016 г.

Эталоны и вспомогательное оборудование, применяемые при поверке:

- термопреобразователи сопротивления эталонные типа ЭТС- 100, диапазон измерений температуры от минус 200 до плюс 420 °C по ГОСТ 8.558-2009, погрешность ± 0.05 °C;
- преобразователь сигналов TC и TП «Теркон», $\pm [0,0002 + 1 \times 10^{-5} \times R_{измер}]$ Ом; $\pm [0,0005 + 5 \times 10^{-5} \times U_{измер}]$ мВ;

- климатическая камера LHT-3203R (DAIHAN), диапазон поддержания температуры от минус 40 до плюс 80 °C, равномерность поддержания ± 1 °C, диапазон поддержания влажности от 20 до 95%, равномерность поддержания ± 3 %, внутренние размеры $2000 \times 1500 \times 2000$ мм;
- малоинерционная трубчатая печь МТП-2M-70-1000, диапазон воспроизводимой температуры от 100 до 1200 °C. Температурный градиент в средней части 0.8 °C/см. Нестабильность поддержания температурного режима 0.1 °C/мин. Размеры рабочего пространства Ø70 мм, длина 1000 мм.

Знак поверки наносится на лицевую панель контроллера измерителя.

Сведения о методиках (методах) измерений

приведены в руководстве по эксплуатации «Измерители распределения температуры волоконно-оптические WELL.DONE моделей OTS3 и LHD3».

Нормативные и технические документы, устанавливающие требования к измерителям распределения температуры волоконно-оптическим WELL.DONE

- 1 ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.
 - 2 Техническая документация компании «LIOS Technology GmbH», Германия.

Изготовитель

Компания «LIOS Technology GmbH», Германия

Адрес: Schanzenstrasse 39 / Building D9-D13, 51063 Cologne, Federal Republic of

Germany, Phone +49 221 99887-0 / Fax +49 221 99887-150

info@lios-tech.com/; www.lios-tech.com

Заявитель

ООО «Научно-производственная фирма Завод «Измерон»

ИНН 7825492691

Адрес: 191144, Санкт- Петербург, ул. Новгородская, 13 Тел. (812) 458-51-00, факс (812) 458-51-00 добавочный 1032

Испытательный центр

ФГУП «ВНИИМ им. Д. И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Тел.: (812) 251-76-01, факс: (812) 713-01-14

E-mail: <u>info@vniim.ru</u>, <u>www.vniim.ru</u>

Аттестат аккредитации Φ ГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 01.01.2016 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2016 г.