ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС Солнечная 220 кВ Самарского ПМЭС

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС Солнечная 220 кВ Самарского ПМЭС (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных УСПД ТК16L (далее - УСПД), каналообразующую аппаратуру, устройство синхронизации времени (далее - УСВ) РСТВ-01.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и специализированное программное обеспечение (далее - СПО) АИИС КУЭ ЕНЭС.

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные

организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройством синхронизации времени РСТВ-01, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ не более ± 1 с. УСВ обеспечивает автоматическую коррекцию часов сервера БД и УСПД. Коррекция часов УСПД проводится при расхождении часов УСПД и времени УСВ более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов УСПД и времени УСВ не более ± 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Время (дата, часы, минуты, секунды) коррекции часов счетчика электроэнергии, отражается в его журнале событий.

Время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке, отражается в журнале событий сервера БД и УСПД.

Программное обеспечение

В АИИС КУЭ используется СПО АИИС КУЭ ЕНЭС версии 1.00, в состав которого входят модули, указанные в таблице 1. СПО АИИС КУЭ ЕНЭС обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО СПО АИИС КУЭ ЕНЭС.

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС
Номер версии (идентификационный номер) ПО	1.00
Цифровой идентификатор ПО	d233ed6393702747769a45de8e67b57e
Алгоритм вычисления цифрового идентификатора ПО	MD5

Комплекс измерительно-вычислительный АИИС КУЭ ЕНЭС, включающий в себя ПО, внесен в Госреестр СИ РФ под № 59086-14;

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом Π O.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименование объекта	Измерительные компоненты					Метрологические характеристики ИК		
		TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %	
1	2	3	4	5	6	7	8	9	
	ЗРУ-6 кВ ПС Солнечная 220 кВ								
1	ячейка № 17 ООО «УК «Стройинд- устрия»	ТОЛ-СЭЩ-10-11 У2 Кл. т. 0,5S 100/5 Зав. № 04084-08; Зав. № 04091-08	3HOЛ.06-6У3 Кл. т. 0,5 6000:√3/100:√3 Зав. № 6380; Зав. № 3648; Зав. № 3278; Зав. № 6547; Зав. № 6359; Зав. № 4865	ZMD402CT41.0467 S2 Кл. т. 0,2S/0,5 Зав. № 94979930	УСПД ТК16L Зав. № 00141	активная реактивная	±1,1 ±2,7	±3,0 ±4,8	

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
2	ячейка № 36 Ф-36	ТОЛ-10-1. 7 У2 Кл. т. 0,5S 100/5 Зав. № 206; Зав. № 76; Зав. № 74	3HOЛ.06-6У3 Кл. т. 0,5 6000:√3/100:√3 Зав. № 6312; Зав. № 6374; Зав. № 6207; Зав. № 6539; Зав. № 6372; Зав. № 6357	ZMD402CT44.0477 S3 Кл. т. 0,2S/0,5 Зав. № 50982087	УСПД ТК16L Зав. № 00141	активная реактивная	±1,1 ±2,7	±3,0 ±4,8
3	ячейка № 51 ООО «УК «Стройиндустри я»	ТОЛ-СЭЩ-10-11 У2 Кл. т. 0,5S 100/5 Зав. № 04245-08; Зав. № 04057-08	НТМИ-6-66 Кл. т. 0,5 6000/100 Зав. № 3966; Зав. № 4978	ZMD402CT41.0467 S2 Кл. т. 0,2S/0,5 Зав. № 94980838	УСПД ТК16L Зав. № 00141	активная	±1,1 ±2,7	±3,0 ±4,8
4	ячейка № 76 Ф-76	ТОЛ-10-8.2-3 У2 Кл. т. 0,5S 100/5 Зав. № 107 20; Зав. № 107 21; Зав. № 107 22	НТМИ-6-66 Кл. т. 0,5 6000/100 Зав. № 4175; Зав. № 4290	ZMD402CT44.0477 S3 Кл. т. 0,2S/0,5 Зав. № 50982088	УСПД ТК16L Зав. № 00141	активная	±1,1 ±2,7	±3,0 ±4,8

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0,98 1,02) Uном; ток (1,0 1,2) Іном, частота (50 \pm 0,15) Γ ц; \cos ј = 0,9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100 ± 4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9 1.1) UH₁; диапазон силы первичного тока (0.02 1.2) IH₁; коэффициент мощности cosj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9 1.1) UH₂; диапазон силы вторичного тока (0.01 1.2) IH₂; коэффициент мощности cosj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 \pm 4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии ZMD402CT41.0467 S2 от минус 40 до плюс 85 °C;
 - для счётчиков электроэнергии ZMD402CT44.0477 S3 от минус 40 до плюс 85 °C;
 - для счётчиков электроэнергии ZMD402CT41.0467 S2 от минус 40 до плюс 85 °C;
 - для счётчиков электроэнергии ZMD402CT44.0477 S3 от минус 40 до плюс 85 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j=0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 4 от 0 до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик ZMD402CT41.0467 S2 среднее время наработки на отказ не менее T=150000 ч, среднее время восстановления работоспособности t = 2 ч;
- электросчётчик ZMD402CT44.0477 S3 среднее время наработки на отказ не менее T=150000 ч, среднее время восстановления работоспособности t = 2 ч;
- электросчётчик ZMD402CT41.0467 S2 среднее время наработки на отказ не менее T=150000 ч, среднее время восстановления работоспособности tв = 2 ч;

- электросчётчик ZMD402CT44.0477 S3 среднее время наработки на отказ не менее T=150000 ч, среднее время восстановления работоспособности t = 2 ч;
- УСПД УСПД ТК16L среднее время наработки на отказ не менее $T=55000~\rm y$, среднее время восстановления работоспособности $t=2~\rm y$;
- сервер среднее время наработки на отказ не менее $T=70000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 45 суток; сохранение информации при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПС Солнечная 220 кВ Самарского ПМЭС типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.	
Трансформатор тока	ТОЛ-СЭЩ-10-11 У2	32139-06	4	
Трансформатор тока	ТОЛ-10-1. 7 У2	7069-07	3	
Трансформатор тока	ТОЛ-10-8.2-3 У2	7069-07	3	
Трансформатор напряжения	3НОЛ.06-6У3	3344-72	12	
Трансформатор напряжения	НТМИ-6-66	2611-70	4	
Счётчик электрической энергии многофункциональный	ZMD402CT41.0467 S2	22422-07	1	
Счётчик электрической энергии многофункциональный	ZMD402CT44.0477 S3	22422-07	1	
Счётчик электрической энергии многофункциональный	ZMD402CT41.0467 S2	22422-07	1	
Счётчик электрической энергии многофункциональный	ZMD402CT44.0477 S3	22422-07	1	
Устройство сбора и передачи данных	УСПД ТК16L	36643-07	1	
Радиосерверы точного времени	PCTB-01	40586-12	1	
Программное обеспечение	СПО АИИС КУЭ ЕНЭС	-	1	
Методика поверки	-	-	1	
Формуляр	-	_	1	

Поверка

осуществляется по документу МП 64178-16 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС Солнечная 220 кВ Самарского ПМЭС. Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в апреле 2016 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков ZMD402CT41.0467 S2 по документу «Счетчики электрической энергии электронные многофункциональные Landis & Gyr Dialog серии ZMD и ZFD. Методика поверки», согласованному с ФГУП «ВНИИМС» 22 января 2007 г.;

- счетчиков ZMD402CT44.0477 S3 по документу «Счетчики электрической энергии электронные многофункциональные Landis & Gyr Dialog серии ZMD и ZFD. Методика поверки», согласованному с ФГУП «ВНИИМС» 22 января 2007 г.;
- счетчиков ZMD402CT41.0467 S2 по документу «Счетчики электрической энергии электронные многофункциональные Landis & Gyr Dialog серии ZMD и ZFD. Методика поверки», согласованному с ФГУП «ВНИИМС» 22 января 2007 г.;
- счетчиков ZMD402CT44.0477 S3 по документу «Счетчики электрической энергии электронные многофункциональные Landis & Gyr Dialog серии ZMD и ZFD. Методика поверки», согласованному с ФГУП «ВНИИМС» 22 января 2007 г.;
- УСПД УСПД ТК16L по документу «Устройство сбора и передачи данных ТК16L для автоматизации измерений и учета энергоресурсов. Методика поверки» АВБЛ.468212.041 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2007 г.;
- РСТВ-01- по документу «Радиосерверы точного времени РСТВ-01. Методика поверки» ПЮЯИ.468212.039МП, утвержденному ФГУП «ВНИИФТРИ» 30.11.11 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл;

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС Солнечная 220 кВ Самарского ПМЭС, аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС Солнечная 220 кВ Самарского ПМЭС

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «ЭнерВита» (ООО «ЭнерВита») ИНН 7718892751

Юридический (почтовый) адрес: 107241, г. Москва, Щелковское шоссе, д. 43, корп. 2, кв. 29

Тел./факс: 8 (495) 462-87-68/ 8 (926) 593-97-57

Заявитель

Общество с ограниченной ответственностью «ПраймЭнерго» (ООО «ПраймЭнерго») Юридический (почтовый) адрес: 109507, г. Москва, Самаркандский бульвар, д. 11, корп. 1, пом. 18

Тел.: (926) 785-47-44

E-mail: shilov.pe@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2016 г.