ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы неавтоматического действия специального класса точности SQP

Назначение средства измерений

Весы неавтоматического действия специального класса точности SQP (далее - весы) предназначены для измерений массы при статическом взвешивании различных веществ и материалов.

Описание средства измерений

Конструктивно весы состоят из взвешивающего модуля и модуля терминала объединённых в один корпус.

Принцип действия весов основан на электромагнитной компенсации системой автоматического уравновешивания воздействия, возникающего под действием силы тяжести взвешиваемого груза, с последующим преобразованием компенсационного усилия системы в электрический сигнал изменяющийся пропорционально массе груза;

Результат взвешивания выводится на модуль терминала, оснащенный сенсорным экраном (TFT - дисплеем). Весы имеют верхнее расположение грузоприемной платформы.

Весы оснащены следующими дополнительными устройствами (указанными ниже в соответствии с ГОСТ OIML R 76-1-2011):

- устройством установки по уровню (Т.2.7.1);
- устройствами установки нуля (Т.2.7.2):
 - полуавтоматическим устройством установки нуля (Т.2.7.2.2);
 - автоматическим устройством установки нуля (Т.2.7.2.3);
 - устройством первоначальной установки нуля (Т.2.7.2.4);
- устройством слежения за нулем (может быть отключено) (Т.2.7.3);
- устройствами тарирования (Т.2.7.4):
 - устройством уравновешивания тары (Т.2.7.4.1);
- совмещённым устройством установки нуля и уравновешивания тары (4.6.9);
- цифровым показывающим устройством с отличающимся делением (Т.2.5.4).

Дополнительно весы оснащены следующими функциями:

- устройством автоматической юстировки «iso-CAL» (4.1.2.5) (подробнее о включаемом / отключаемом устройстве «iso-CAL» для разных модификаций в разделе «Метрологические и технические характеристики»):
- устройством полуавтоматической юстировки (при выборе соответствующего подпункта меню) (4.1.2.5).

Обозначение модели весов складывается из позиций: SQP-X1 X2 X3, где

- X1 модификация, связанная с техническими характеристиками взвешивающего модуля: F, G, H, I;
- X2 модификация, связанная с количеством режимов работы (коммерческие названия: Secura, Quintix);
- X3 модификация, связанная с метрологическими характеристиками взвешивающего модуля (26-10RU, 225D-10RU, 125-10RU, 125D-10RU, 65-10RU, 35-10RU, 324-10RU, 1103-10RU).

Весы выпускаются в разных модификациях, отличающихся:

- техническими и метрологическими характеристиками взвешивающего модуля:

Таблина 1

F	G	Н	I
225D-1ORU	324-1ORU	26-1ORU	1103-1ORU
125-1ORU			
125D-1ORU			
65-1ORU			
35-1ORU			

- количеством режимов работы, не связанных со взвешиванием (прикладные программы меню):

Таблица 2

	Secura	Quintix
индивидуальная маркировка	+	-
определение минимального веса образца SQmin	+	-
суммирование компонентов	+	+
Статистика	+	+
Пересчет	+	+
Смешивание	+	+
расчет плотности	+	+
процентное взвешивание	+	+
взвешивание подвижных объектов	+	+
контрольное взвешивание	+	+
максимальное значение	+	+
подсчет штук	+	+

Весы с ценой деления менее 0,01 г оснащены стационарной ветрозащитной витриной.

Весы оснащаются USB интерфейсом передачи данных, для автоматического протоколирования в соответствии со стандартами ISO/GLP.

Идентификационные маркировки и защитные пломбы

Схема нанесения идентификационных маркировок и защитных пломб представлены на рисунке 1.

Рисунок 1 - Идентификационные маркировки и защитные пломбы

На рисунке 1 использованы следующие обозначения:

S - защитная пломба;

MD -метрологические характеристики Min, Max, e, и d;

К - наклейка с обозначением модели весов и метрологических характеристик:

Программное обеспечение

Весы оснащены встроенным программным обеспечением (далее - ПО). Программное обеспечение весов заложено в микроконтроллере весов и модуле терминала в процессе производства и защищено от доступа и изменения. Изменение ПО невозможно без применения специализированного оборудования производителя. Версии ПО и цифровой идентификатор ПО высвечиваются при обращении к одноименному подпункту меню весов.

Программное обеспечение имеет взвешивающий модуль (основные функции - передача и обработка сигнала с весоизмерительного устройства, и последующий пересчет его в единицы массы) и модуль терминала (метрологически значимые функции - хранение данных юстировки, результатов измерений, вывод данных на дисплей и передачу на периферийные устройства). Метрологически незначимая часть ПО модуля терминала содержит информацию о количестве

прикладных программ в режиме работы, не связанном со взвешиванием, о порядковом номере и (или) годе выпуска.

Идентификационные данные метрологически значимой части программного обеспечения (в таблице- ПО)

Таблица 3

<u> </u>					
ПО весов	Наимено-	Идентификаци-	Номер версии	Цифровой	Алгоритм
	вание ПО	онное наимено-	(идентификаци-	идентифика-	вычисления
		вание ПО, вы-	онный номер) ПО	тор ПО	цифрового
		свечиваемое на			идентифи-
		табло			катора ПО
ПО взвеши-			00-50-02.XX	1701	
вающего моду-		Version BAC	или 00-50-05.ХХ	15B2	
ЛЯ			или 00-50-07.ХХ	1577	
ПО модуля	SQP-F SQP-G SQP-H	Version APC	01-71-02.XX или 01-71-03.XX		контрольная сумма
терминала	SQP-I		01-70-02.XX или 01-70-03.XX		

Примечания:

Модификации идентификационного наименования ПО связана с модификациями весоизмерительного устройства (F - для 225D-1ORU, 125-1ORU, 125D-1ORU, 65-1ORU, 35-1ORU, G- для 324-1ORU, H- для 26-1ORU, I- для 1103-1ORU)

XX - это специальный символ модификаций, связанный с внесением дополнений в метрологически незначимую часть ПО.

Уровень защиты от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Фотографии внешнего вида весов представлены на рисунках 2а - 2в.

Рисунок 2a - Весы: SQP-H SECURA 26-1ORU, SQP-F SECURA 225D-1ORU, SQP-F SECURA 125-1ORU, SQP-G SECURA 324-1ORU

Рисунок 2б - Весы: SQP-F QUINTIX 125D-1ORU, SQP-F QUINTIX 65-1ORU,

SQP-F QUINTIX 35-1ORU.

Рисунок 2в - Весы: SQP-I SECURA 1103-1ORU

Места нанесения поверительного клейма (знака поверки в виде наклейки) обозначены стрелками, если позволяют условия эксплуатации.

Метрологические и технические характеристики

Таблица 4

Наименование характеристики	Значение характеристики для взвешивающего модуля							
Модификация взвешивающего модуля	26-1ORU	225D-10RU	125-1ORU	125D-10RU	65-1ORU	35-1ORU	324-1ORU	1103-1ORU
1 Класс точности по ГОСТ OIML R 76-1-2011					I			
2 Максимальная нагрузка Мах, г	21	120/220	120	60/120	60	30	320	I
3 Поверочное деление, е, г	0,001	0,001	0,001	0,001	0,001	0,001	0,001	1100
4 Действительная цена деления d, г	0,000002	0,00001/	0,00001	0,00001/	0,00001	0,00001	0,0001	0,01
	0,000002	0,0001	0,00001	0,0001	0,00001	0,00001	0,0001	0,01
5 Число поверочных делений, п	21000	220000	120000	120000	60000	30000	220000	0,001
6 Минимальная нагрузка Min, г	0,0002	0,001	0,001	0,001	0,001	0,001	0,01	110000
7 Время установления показаний, с, не более	8	6/2	6	6/2	6	6	2	0,1
8 Диаметр грузоприемной платформы, мм	50	80	80	80	80	80	90	1,5
9 Габаритные размеры, мм, не более	368x218x316				359x218x319			
10 Масса весов, кг, не более	8				5,9			

11 Пределы допускаемой погрешности при первичной поверке (в эксплуатации) в интервалах:

до 50000 е включ. \pm 0,5e (\pm 1 е) свыше 50000 е до 200000 е включ. \pm 1,0 е (\pm 2 е) свыше 200000 е до Мах включ \pm 1,5 е (\pm 3 е)

- 12 Диапазон уравновешивания тары, г от 0 до Мах;
- 13 Параметры источника питания для сетевого адаптера весов (100 240) \pm 10 % В / 50 \div 60 Гц Напряжение питания весов составляет от 12 до 18 В постоянного тока.
- 14 Потребляемая мощность, максимальная 2 Вт
- 15 Температуры эксплуатации, °С (3.9.2.2 ГОСТ OIML R 76-1-2011)

Таблица 5

Модификация весов	SECURA	QUINTIX
Температуры эксплуатации, °С		
устройство iso-CAL выкл.	от + 17 до +27	от + 17 до +27
устройство iso-CAL вкл.	от + 10 до +30	от + 10 до +30

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

Таблица 6

Наименование	Количество, шт.
Весы	1
Грузоприемная платформа	1
Сетевой адаптер	1
Руководство по эксплуатации на электронном носителе	1

Поверка

осуществляется по Приложению ДА ГОСТ OIML R 76-1-2011 «Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Эталонные средства измерений, используемые при поверке: гири класса точности E_2 по ГОСТ OIML R 111-1-2009 (первого, второго, третьего разряда по ГОСТ 8.021-2005).

Сведения о методиках (методах) измерений

Методика измерений представлена в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к весам неавтоматического действия специального класса точности SQP

ГОСТ 8.021-2015 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений массы»

ГОСТ OIML R 76-1-2011 «Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

Техническая документация Sartorius Lab Instruments GmbH & Co.KG, Германия.

Изготовитель

Sartorius Lab Instruments GmbH & Co.KG, Германия Weender Landstrasse 94 - 108, 37075 Goettingen, Germany

Tel: +49.551.308.0 Fax: +49.551.308.3289 http://www.sartorius.de

TT U		
Испытательный	Her	ITN
	401	

ФГУП «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ»)

620000, г. Екатеринбург, ул. Красноармейская, 4

Тел. (343) 350-26-18, факс: (343) 350-20-39

E-mail: uniim@uniim.ru

Аттестат аккредитации Φ ГУП «УНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311373 от 10.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2016 г.