ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Охинская ТЭЦ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Охинская ТЭЦ» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ 31819.22-2012 (IEC 62053-22:2003) в режиме измерений активной электроэнергии и по ГОСТ 31819.23-2012 (IEC 62053-23:2003) в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее – ПО) ПК УЧЕТ ЭНЕРГОРЕСУРСОВ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (COEB), которая охватывает уровень ИИК и ИВК. Для АИИС КУЭ в качестве устройства синхронизации времени используются радиочасы МИР РЧ-02, на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS).

Устройство синхронизации времени обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени приемника более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов сервера БД и времени приемника не более ± 1 с. Часы счетчиков синхронизируются от часов сервера БД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и сервера БД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Время (дата, часы, минуты, секунды) коррекции часов счетчика электроэнергии, отражается в его журнале событий.

Время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке, отражается в журнале событий сервера БД.

Программное обеспечение

В АИИС КУЭ ОАО «Охинская ТЭЦ» используется ПО, состоящее из модулей, указанные в таблице 1. ПО АИИС КУЭ обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АИИС КУЭ.

Таблица 1 – Метрологические значимые модули ПО

Идентификацион ные признаки	Значение					
Идентификацион ное наименование ПО	Программный комплекс СЕРВЕР СБОРА ДАННЫХ MirServsbor.msi	Программный комплекс УЧЕТ ЭНЕРГОРЕСУРСОВ EnergyRes.msi	Программа ПУЛЬТ ЧТЕНИЯ ДАННЫХ MirReaderSetup.msi			
Номер версии (идентификацион ный номер) ПО	2.0.0.1	2.5	2.0.9.0			
Цифровой идентификатор ПО	7d30b09bbf536b7f45db3 52b0c7b7023	55a532c7e6a3c30405d70 2554617f7bc	6dcfa7d8a621420f8a52b 8417b5f7bbc			
Алгоритм вычисления цифрового идентификатора ПО	MD5	MD5	MD5			

Системы автоматизированные информационно-измерительные комплексного учета энергоресурсов МИР (АИИС КУЭ МИР), в состав которых входит ПО, внесены в Госреестр СИ РФ под № 36357-13.

Предел допускаемой дополнительной абсолютной погрешности ПК УЧЕТ ЭНЕРГОРЕСУРСОВ, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов ПК УЧЕТ ЭНЕРГОРЕСУРСОВ.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом Π O.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

IЙ	Наименование объекта и номер ИК	Измерительные компоненты					Метрологические характеристики ИК	
Порядковый номер		TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная погрешн ость, %	Погрешность в рабочих условиях, %
Охинская ТЭЦ								
1	РУСН-6кВ, Яч.3 КЛ-6 кВ «Б-6», ВМ1-ФБ-6 ИК № 21	ТОЛ-10-1-1У2 Кл. т. 0,2S 100/5 Зав. № 14703; Зав. № 14780; Зав. № 14729	ЗНОЛПМ-6УХЛ2 Кл. т. 0,5 6000/√3/100/√3 Зав. № 3001276; Зав. № 3001278; Зав. № 3001262	МИР C-03.02Т- EQTBN-RE-1Т-Н Кл. т. 0,2S/0,5 Зав. № 34250814101223	-	активная	±0,8 ±1,8	±1,8 ±3,6
2	РУСН-6кВ, Яч.37 КЛ-6 кВ «Б-6», ВМ2-ФБ- 6 ИК № 22	ТОЛ-10-1-1У2 Кл. т. 0,2S 100/5 Зав. № 14778; Зав. № 15018; Зав. № 14704	ЗНОЛПМ-6УХЛ2 Кл. т. 0,5 6000/√3/100/√3 Зав. № 3001320; Зав. № 3001327; Зав. № 3001324	МИР С-03.02Т- EQTBN-RE-1Т-Н Кл. т. 0,2S/0,5 Зав. № 34250814101203	-	активная	±0,8 ±1,8	±1,8 ±3,6

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0,98 1,02) Uном; ток (1,0 1,2) Іном, частота (50 \pm 0,15) Γ ц; \cos j = 0,9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9-1.1) UH₁; диапазон силы первичного тока (0.02-1.2) IH₁; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9 1.1) UH₂; диапазон силы вторичного тока (0.01 1.2) IH₂; коэффициент мощности cosj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100±4) кПа;
 - температура окружающего воздуха:
 - от минус 40 до плюс 55 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 21 22 от плюс 50 до плюс 70 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик МИР C-03.02T-EQTBN-RE-1T-H среднее время наработки на отказ не менее T=290000 ч, среднее время восстановления работоспособности tb=2 ч;
- сервер среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t=1 ч.

Надежность системных решений:

 защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания; – резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Охинская ТЭЦ» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.	
Трансформатор тока	ТОЛ-10-1-1У2	47959-11	6	
Трансформатор напряжения	ЗНОЛПМ-6УХЛ2	46738-11	6	
Счётчик электрической энергии многофункциональный	МИР C-03.02T- EQTBN-RE-1T-H	42459-12	2	
	Программный комплекс СЕРВЕР СБОРА ДАННЫХ MirServsbor.msi	-	1	
Программное обеспечение	Программный комплекс УЧЕТ ЭНЕРГОРЕСУРСОВ EnergyRes.msi	-	1	
	Программа ПУЛЬТ ЧТЕНИЯ ДАННЫХ MirReaderSetup.msi	-	1	
Методика поверки	-	-	1	
Паспорт	-	-	1	

Поверка

осуществляется по документу МП 64376-16 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Охинская ТЭЦ». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в феврале 2016 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков МИР C-03.02T-EQTBN-RE-1T-H по документу «Счетчики электрической энергии трехфазные электронные МИР C-03. Методика поверки. М08.112.00.000 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2012 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Охинская ТЭЦ», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Охинская ТЭЦ»

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «Научно-производственное объединение «МИР» (ООО «НПО «МИР»)

ИНН 5528012370

Юридический (почтовый) адрес: 644105, г. Омск, ул. Успешная, 51

Тел.: (3812) 35-47-30, 35-47-69

Факс: (3812) 35-47-01 E-mail: <u>mir@mir-omsk.ru</u>

www.mir-omsk.ru

Заявитель

Общество с ограниченной ответственностью «Сервис-Метрология»

(ООО «Сервис-Метрология»)

Юридический адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3 Почтовый адрес: 119119, г. Москва, Ленинский пр-т, 42, 25-35

Тел./ Факс: (499) 755-63-32 E-mail: info@s-metr.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____ 2016 г.