ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ФОРЭС» (Асбестовское отделение)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ФОРЭС» (Асбестовское отделение) (далее по тексту – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее — ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее — ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52322-2005 ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), устройство синхронизации времени УСВ-3 (далее – УСВ-3) и программное обеспечение (далее – ПО) ПК Энергосфера.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (COEB), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ-3, принимающим сигналы точного времени от спутников глобальной системы позиционирования (GPS). Устройство синхронизации времени обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД

проводится при расхождении часов сервера БД и времени УСВ-3 более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов сервера БД и времени УСВ-3 не более ± 1 с. Часы счетчиков синхронизируются от часов сервера БД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и сервера БД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ ООО «ФОРЭС» (Асбестовское отделение) используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

	STOTIL TOURING SHA HIN	~			
Идентификационные признаки			Значение		
Идентификационное наименование ПО			ПК «Энергосфера»		
			Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО			1.1.1.1		
Цифровой идентификатор ПО			CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм	вычисления	цифрового	MD5		
идентификатора ПО			MIDS		

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

ıй		Измерительные компоненты					Метрологические характеристики ИК	
Порядковый номер	Наименование объекта и номер ИК	TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная погрешн ость, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ПС №3 110/6 кВ, РУ-6 кВ 1 СШ, яч. № 2, ф.3-02 ФОРЭС	ТОЛ-10 Кл. т. 0,2S 800/5 Зав. № 30613; -; Зав. № 32724	НТМИ-6-66 Кл. т. 0,5 6000/100 Зав. № РРНН	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0811102072	-	активная	±1,1 ±2,7	±3,0 ±5,1
2	ПС №3 110/6 кВ, РУ-6 кВ 2 СШ, яч. № 26, ф.3-26 ФОРЭС	ТОЛ-10 Кл. т. 0,2S 800/5 Зав. № 32163; -; Зав. № 32161	НТМИ-6 Кл. т. 0,5 6000/100 Зав. № 4531	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0811102399	-	активная	±0,8 ±1,8	±1,7 ±3,3
3	КТПН №1 6/0,4 кВ, ЩО №9 0,4 кВ, ф. №16	ТШП-0,66 Кл. т. 0,5S 400/5 Зав. № 5114414; Зав. № 5114379; Зав. № 5114383	-	ПСЧ-4ТМ.05МК.16 Кл. т. 0,5S/1,0 Зав. № 1101160734	-	активная	±0,8 ±2,2	±2,9 ±5,0

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
KTΠΗ №7 6/0,4 κΒ, ШР №1 0,4 κΒ, φ. №1 ΑΓ3C	,			Меркурий 230 ART-01 PQRSIN	активная	±1,1	±4,0	
	-	-	Кл. т. 1,0/2,0 Зав. № 19442196	-	реактивная	±2,4	±8,5	
5	КТПН №7 6/0,4 кВ, ШР №1 0,4 кВ, ф. №4 СТ «Яблонька» КЖУ №3	ТОП-0,66 Кл. т. 0,5 150/5 Зав. № 5005077; Зав. № 5005100; Зав. № 5005123	-	Меркурий 230 ART-03 PQRSIDN Кл. т. 0,5S/1,0 Зав. № 21957170	-	активная	±1,0 ±2,4	±3,6 ±6,2

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98 1.02) Uном; ток (1.0 1.2) Іном, частота (50 ± 0.15) Γ ц; \cos j = 0.9 инд.;
- температура окружающей среды: TT и TH от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9-1.1) UH₁; диапазон силы первичного тока (0.02-1.2) IH₁; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9-1.1) UH₂; диапазон силы вторичного тока (0.01-1.2) IH₂; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100±4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии СЭТ-4ТМ.03М от минус 40 до плюс 60 °C;
 - для счётчиков электроэнергии ПСЧ-4ТМ.05МК.16 от минус 40 до плюс 60 °C;
- для счётчиков электроэнергии Меркурий 230 ART-01 PQRSIN от минус 40 до плюс 70 °C:
- для счётчиков электроэнергии Меркурий 230 ART-03 PQRSIDN от минус 40 до плюс 70 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 5 от минус 20 до плюс 30 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее T=140000 ч, среднее время восстановления работоспособности t=2 ч;
- электросчётчик ПСЧ-4ТМ.05МК.16 среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t=2 ч;

- электросчётчик Меркурий 230 ART-01 PQRSIN среднее время наработки на отказ не менее T=150000 ч, среднее время восстановления работоспособности tb=2 ч;
- электросчётчик Меркурий 230 ART-03 PQRSIDN среднее время наработки на отказ не менее T=150000 ч, среднее время восстановления работоспособности tb=2 ч;
- сервер среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t = 1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки не менее 45 суток; при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «ФОРЭС» (Асбестовское отделение) типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформатор тока	ТОЛ-10	7069-02	4
Трансформатор тока	ТШП-0,66	47957-11	3
Трансформатор тока	ТОП-0,66	47959-11	3
Трансформатор напряжения	НТМИ-6-66	2611-70	1
Трансформатор напряжения	НТМИ-6	831-53	1
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-08	2
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.16	46634-11	1
Счётчик электрической энергии многофункциональный	Меркурий 230 ART-01 PQRSIN	23345-07	1
Счётчик электрической энергии многофункциональный	Меркурий 230 ART-03 PQRSIDN	23345-07	1
Устройство синхронизации времени	УСВ-3	51644-12	1
Программное обеспечение	Энергосфера	-	1
Методика поверки	-	-	1
Паспорт-Формуляр	-	-	1

Поверка

осуществляется по документу МП 64493-16 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ФОРЭС» (Асбестовское отделение). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в мае 2016 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«ГСИ.}$ Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;
- счетчиков ПСЧ-4ТМ.05МК.16 по документу «Счетчик электрической энергии ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки»

ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;

- счетчиков Меркурий 230 ART-01 PQRSIN по документу «Методика поверки» АВЛГ.411152.021 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» «21» мая 2007 г.;
- счетчиков Меркурий 230 ART-03 PQRSIDN по документу «Методика поверки» АВЛГ.411152.021 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» «21» мая 2007 г.:
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- УСВ-3 в соответствии с документом «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки ВЛСТ.240.00.000МП», утвержденным руководителем ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г.;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0.1 °C; диапазон измерений относительной влажности от 10 до -100 %, дискретность 0.1 %;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0.01 до 19.99 мТл.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ФОРЭС» (Асбестовское отделение), аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ФОРЭС» (Асбестовское отделение)

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- $3\ \Gamma OCT\ P\ 8.596-2002\ \Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «ПраймЭнерго»

(ООО «ПраймЭнерго»)

ИНН 7721816711,

Юридический (почтовый) адрес: 109507, г. Москва, Самаркандский бульвар, д. 11,

корп. 1, пом. 18 Тел.: (926) 785-47-44

E-mail: shilov.pe@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

М.п.

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

	2016 r

С.С. Голубев