ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерительные волоконно-оптические SM/SI (NTM/NTI)

Назначение средства измерений

Системы измерительные волоконно-оптические SM/SI (NTM/NTI) (далее - системы), состоящие из блока измерительного устройства и комплекта волоконно-оптических датчиков на основе решёток Брэгга (брэгговских датчиков), предназначены для измерений длины волны отражения брэгговских датчиков, а также для измерений воздействующих на датчики температуры и деформации.

Описание средства измерений

Принцип действия системы заключается в измерении мощности отражённого от брэгговских датчиков оптического сигнала при сканировании по длине волны с помощью перестраиваемого лазера. В процессе измерений регистрируется зависимость мощности отражённого от датчика излучения от длины волны с последующим поиском экстремумов и определением соответствующих данным экстремумам значений длины волны. Брэгговский датчик представляет собой участок оптического волокна с градиентом показателя преломления периодического характера (решётка Брэгга), в результате чего часть проходящего через данное волокно излучения отражается, причём длина волны максимума коэффициента отражения соответствует периоду решётки. При изменении данного периода вследствие каких-либо физических процессов (деформация или изменение температуры) длина волны отражения брэгговской решётки также меняет своё значение.

В состав систем могут входить измерительные устройства трёх модификаций с различными вариантами исполнения:

- 1) SM-x25-200, SM-x25-500 и SM-x25-700. Модификация «x25» обозначает применение «статического» измерительного устройства, отличительными чертами которого являются возможность получения спектра излучения во всём рабочем спектральном диапазоне с высоким разрешением и низкая скорость сканирования. Трёхзначные цифры в конце шифра модификации обозначают отличия в диапазоне, погрешности и скорости сканирования при измерениях длины волны. Символ «x» может принимать значения 1 или 2 в зависимости от исполнения корпуса измерительного устройства настольное или в стоечный каркас 19" (см. рис.1 и 2);
- 2) SM-x30-200, SM-x30-500, SM-x30-700. Модификация «x30» обозначает применение «динамического» измерительного устройства, отличительной чертой которого является высокая скорость сканирования при измерениях длин волн пиков отражения брэгговских датчиков. Значения остальных цифр и символов в шифре модификации аналогичны «x25» (см. рис.3 и 4);
- 3) SI-155, SI-255-200, SI-255-500, SI-255-800. Данные модификации обозначают применение измерительного устройства, сочетающего в себе преимущества «статических» и «динамических» модулей. Данное измерительное устройство выполнено в корпусе настольнопереносного типа с встроенной ЭВМ и сенсорным экраном. Значения трёхзначных цифр в конце шифра модификации аналогичны «x25» и «x30» (см. рис.5 и 6).

Каждая модификация также может содержать дополнительную аббревиатуру в виде символов «NT» вместо символа «S». Данная аббревиатура означает сборку устройства на территории $P\Phi$.

В состав систем могут входить волоконно-оптические датчики для измерений температуры и деформации следующих марок:

- os4210, os4220, os4280, os4310, os4330, os4350, os4410 и os4420 для измерений температуры (см. рис. 7);
- os3110, os3120, os3150, os3155, 3200, os3600 и os3610 для измерений деформации (см. рис. 8);
 - os4100 для температурной компенсации датчиков деформации (см. рис.9).

Управление работой систем осуществляется с помощью персонального компьютера, подключаемого через интерфейс Ethernet соответствующим кабелем к измерительному устройству. В случае систем модификации SI (NTI) ЭВМ встроена в измерительное устройство, и управление может осуществляться с помощью сенсорного экрана.

Конструктивно системы состоят из блока измерительного устройства и комплекта брэгговских датчиков. Блоки измерительного устройства выполнены в прямоугольных металлических корпусах настольно-переносного типа. Для ограничения доступа внутрь корпусов произведено их пломбирование. Брэгговские датчики могут быть выполнены на пластинах или в небольших корпусах (прямоугольных или цилиндрических) с волоконно-оптическими выводами. Датчики подключают к измерительному устройству с помощью одномодовых волоконно-оптических кабелей, выполненных по стандарту ITU-T G.652 или совместимых с ними.

Рисунок 1 - Внешний вид измерительного устройства SM-125

Рисунок 2 - Внешний вид измерительного устройства SM-225

Рисунок 3 - Внешний вид измерительного устройства SM-130

Рисунок 4 - Внешний вид измерительного устройства SM-230

Рисунок 5 - Внешний вид измерительного устройства SM-155

Рисунок 6 - Внешний вид измерительного устройства SM-255

Рисунок 7 - Внешний вид датчиков для измерений температуры

Рисунок 8 - Внешний вид датчиков для измерений деформации

Рисунок 9 - Внешний вид датчиков для температурной компенсации

Программное обеспечение

Программное обеспечение систем (далее по тексту - ПО) разделено на две части: интерфейсную и аппаратную.

Аппаратная часть ПО размещается в энергонезависимой памяти цифрового сигнального процессора измерительного устройства с первичной обработкой данных, запись которой осуществляется в процессе производства. Физический доступ к модулю исключён конструкцией измерительного устройства.

Интерфейсная часть ПО (входит в комплект поставки) находится на ПК, используемом для сбора и визуализации показаний измерительной системы, и представляет собой приложение, предназначенное для вычисления длины волны из спектральных данных, полученных измерительным устройством. Преобразования полученных данных о длине волны в значения деформации и температуры, а также для отображения, обработки и сохранения результатов измерений фиксируются приложением.

Метрологически значимой частью ПО систем является интерфейсная часть ПО.

Идентификационные данные (признаки) метрологически значимой части ΠO указаны в таблице 1

Таблица 1

1 acoming 1	
Идентификационные данные (признаки) ПО	Значение
Идентификационное наименование ПО	MO ENLIGHT
Номер версии (идентификационный номер) ПО	V1.5.59 или выше
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	-
Алгоритм вычисления цифрового идентификатора ПО	-

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует «среднему» уровню защиты в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение									
Модификация измерительного устройства	x25-200	x25-500	x25-700	x30-200	x30-500	x30-700	si255-200	si255-500	si255-800	si155
Метрологические характеристики										
Диапазон измерений длин волн, нм	от 1520 до 1580	от 1510 ;	до 1590	от 1520 до 1580	от 1510 ,	до 1590	от 1500 до 1620	ОТ	1460 до 1620)
Пределы допускаемой абсолютной погрешности	± 20	±2	±5	±20 ±2						
при измерениях длин волн, пм										
Диапазон измерений температуры ¹ , °C	от минус 40 до плюс 120									
Пределы допускаемой абсолютной погрешности при измерениях температуры ^{2,3} , °C	±2,0	±0,5	±1,0	±2,0 ±0,5						
Диапазон показаний деформации ⁴ , %	от 0,001 до 0,5									
Диапазон измерений деформации, 4 %	от 0,01 до 0,25									
Пределы допускаемой приведённой погрешности при измерениях деформации ^{2,5} , %	±1									
		Техн	ические ха	рактеристи	ки					
Частота сканирований, Гц	1 2 5 100 500 1000 1000									
Количество оптических каналов	1	4	4	1	4	4	4	8	16	4/16
Дрейф длины волны отражения брэгговских дат-	20 (для измерений температуры)									
чиков, пм/год	25 (для измерений деформации)									
Время наработки на отказ брэгговских датчиков ⁶ , не менее, ч 94558										
Интерфейс				Ethernet						
Электропитание осуществляется от сети переменного тока напряжением, В, частотой, Гц 50 - 60										
Масса измерительного устройства, кг, не более	2,0 (для x=1) 4,1 (для x=2)		2,5 (для x=1) 4,1 (для x=2)		5,2			3,3		
Габаритные размеры измерительного устройства,			122′ 267′ 135 (для х=1)		307′ 274′ 69		206′ 274′			
мм, не более	435′442′45 (для х=2)		435′442′45 (для х=2)				79			
Условия эксплуатации										
Температура окружающего воздуха, °С	от 0 до плюс 40		от 0 до плюс 50		от минус 20 до плюс 60					
Относительная влажность воздуха, % (при температуре плюс 40 °C, без конденсации) не более 80										

⁻ при использовании брэгговских датчиков типа os44xx диапазон измерений температуры составляет от минус 40 до плюс 100 °C;

² - без учёта дрейфа длины волны отражения брэгговского датчика;

³ - значения указаны для датчиков температуры с премиум калибровкой;

^{4 -} диапазон указан для растяжения и для сжатия;

⁵ - в рабочем диапазоне температуры от минус 40 до плюс 80 °C (от минус 40 до плюс 120 для os3100);

^{6 -} при частоте изменения значения деформации датчика во всём рабочем диапазоне измерений не более 0,3 Гц;

х - может принимать значения 1 или 2 в зависимости от исполнения корпуса измерительного устройства. 1 для настольного корпуса или 2 для стоечного каркаса 19" корпуса.

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации систем печатным способом и в виде наклейки на переднюю панель корпусов измерительных устройств систем методом наклеивания.

Комплектность средства измерений

Таблица 3

Наименование	Количество	
Измерительное устройство	1 шт.	
Брэгговский датчик для измерений температуры *	-	
Брэгговский датчик для измерений деформации *	-	
Брэгговский датчик для температурной компенсации *	-	
Блок питания (шнур питания) измерительного устройства	1 шт.	
Кабель Ethernet	1 шт.	
Компакт диск с ПО	1 диск	
Руководство по эксплуатации	1 экз.	
Методика поверки МП 055.Ф3-15	1 экз.	
* - модификация / количество указываются при заказе		

Поверка

осуществляется по документу МП 055. Φ 3-15 «Государственная система обеспечения единства измерений. Системы измерительные волоконно-оптические SM/SI (NTM/NTI). Методика поверки», утвержденному Φ ГУП «ВНИИО Φ И» 25 августа 2015 г.

Основные средства поверки и их метрологические характеристики:

- 1 Государственный специальный эталон единицы длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации (ВОСП) ГЭТ 170- 2011:
 - диапазон длин волн: от 0,6 до 1,7 мкм;
 - относительная погрешность измерений длины волны: не более 1,4·10⁻⁷
- 2 Рабочий эталон единиц средней мощности и ослабления оптического излучения в ВОСП:
 - спектральный диапазон: от 500 до 1700 нм;
 - диапазон измерений средней мощности: от 10^{-10} до 10^{-2} Вт;
- пределы допускаемой относительной погрешности измерений средней мощности оптического излучения в рабочем спектральном диапазоне: ± 5 %.
 - 3 Измеритель температуры двухканальный прецизионный МИТ 2.05:
 - диапазон измерений температуры: от минус 200 до плюс 500 °C;
- пределы допускаемой погрешности измерений температуры: $\pm (0,005+10^{-5}\cdot t)$ °C, где t значение температуры.
 - 4 Термометр сопротивления платиновый вибропрочный ТСПВ-1:
 - диапазон измерений температуры: от минус 80 до плюс 200 °C;
 - номинальное сопротивление: 10, 25, 100 Ом
 - 5 Индикатор многооборотный типа 1МИГ, класс точности 0:
 - цена деления: 0,001 мм;
 - диапазон измерений линейного перемещения: до 1 мм;
- наибольшая разность погрешностей измерений линейного перемещения (на участке шкалы 200 делений): не более 1,5 мкм;

Сведения о методиках (методах) измерений

«Системы измерительные волоконно-оптические SM/SI (NTM/NTI). Руководство по эксплуатации», раздел 7.

Нормативные и технические документы, устанавливающие требования к системам измерительным волоконно-оптическим SM/SI (NTM/NTI)

ГОСТ 8.585-2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконно-оптических систем связи и передачи информации».

Системы измерительные волоконно-оптические NTM/NTI. Инструкция по сборке.

Изготовитель

ООО «Нева Технолоджи»

Адрес: 198097, г. Санкт-Петербург, ул. Новоовсянниковская, д.17

Телефон: +7 (812) 380-92-13; +7 (812) 337-51-92

ИНН 7805092920

E-Mail: nevatech@mail.rcom.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»)

Адрес: 119361, Москва, ул. Озерная, 46

Телефон: (495) 437-56-33; факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации ФГУП «ВНИИОФИ» по проведению испытаний средств измерений в целях утверждения типа № 30003-14 от 23.06.2014 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

		С.С. Голубев
М.п.	« »	2016 г.