ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Бортовые устройства «БК-СВП»

Назначение средства измерений

Бортовые устройства «БК-СВП» (далее - устройства), предназначены для измерения текущих навигационных параметров по сигналам навигационных космических аппаратов глобальных навигационных спутниковых систем (ГНСС) ГЛОНАСС и GPS, определения на их основе координат местоположения (широты, долготы и высоты относительно поверхности геоида) потребителя в системе координат ПЗ-90.11 при движении его со скоростью до 70 м/с и синхронизации внутренней шкалы времени устройства с национальной шкалой координированного времени UTC(SU).

Описание средства измерений

Принцип действия устройств основан на измерениях псевдодальностей от навигационных спутников ГНСС ГЛОНАСС и GPS до установленного на транспортное средство (ТС) бортового устройства по навигационным сигналам стандартной точности в частотном диапазоне L1, последующем расчете на основе указанных псевдодальностей координат ТС и синхронизации шкалы времени устройства со шкалой UTC(SU).

Определенные координаты ТС сохраняются в памяти устройства и передается в подсистему приема и обработки данных с бортовых устройств (ППОД БУ) системы взимания платы (СВП) в счет возмещения вреда, причиняемого автомобильным дорогам общего пользования федерального значения транспортными средствами, имеющими разрешенную максимальную массу свыше 12 тонн.

Обмен информацией между устройствами и ППОД БУ осуществляется по каналам беспроводной связи GSM/GPRS/3G по протоколу TCP-IP.

Конструктивно устройство представляет собой моноблочный корпус с индикаторами, клавишей управления и кабелем питания со штекером для подключения к розетке «прикуривателя» автомобиля. Устройство оснащено модулем позиционирования, коммуникационным модулем, модулем электропитания, управляющим модулем, модулем интерфейса пользователя, модулем детектора движения (акселерометром), модулем СКЗИ - криптографической защиты, модулем контроля целостности корпуса и модулем интерфейса сервисного обслуживания.

Внешний вид устройства приведен на рисунке 1. Места нанесения знака утверждения и пломбировки от несанкционированного доступа приведены на рисунке 2.

Рисунок 1 – Внешний вид бортового устройства «БК-СВП»

Рисунок 2 – Место нанесения знака утверждения и пломбировки от несанкционированного доступа

Программное обеспечение

Программное обеспечение (ПО) устройств представлено встроенным интегрированным ПО управляющего микроконтроллера и навигационного модуля.

Метрологически значимые части программного обеспечение устройств и их идентификационные данные (признаки) приведены в таблице 1.

Таблица 1 – Идентификационные данные

Наименование	Идентификацион-	Номер вер-	Цифровой иденти-	Алгоритм вы-
ПО	ное наименование	сии (иден-	фикатор программ-	числения циф-
	ПО	тификаци-	ного обеспечения	рового
		онный но-	(контрольная сумма	идентификато-
		мер) ПО	исполняемого кода)	pa
Встроенное про-		Отсутству-	Отсутствует воз-	
граммное обеспечение	BU-firmware	ет возмож-	можность считыва-	
БУ		ность счи-	ния и модификации	_
		тывания	исполняемого кода	
Встроенное про-		Отсутству-	Отсутствует воз-	
граммное обеспечение	EVAM8M-	ет возмож-	можность считыва-	
навигационного при-	firmware	ность счи-	ния и модификации	_
емника		тывания	исполняемого кода	

Физический доступ к управляющему микроконтроллеру и другим компонентам, расположенным внутри корпуса СИ, ограничен путём пломбирования винтов корпуса. Дополнительной мерой защиты от считывания и модификации исполняемого кода ПО СИ является использование блокировки памяти программ микроконтроллера (установка битов защиты) при записи программы в память микроконтроллера на предприятии-изготовителе. Также для защиты от воздействия на ПО или метрологически значимые данные предусмотрен датчик вскрытия корпуса, после срабатывания которого, функционирование устройств прекращается.

Уровень защиты ПО устройств и сохраняемых данных от преднамеренных и непреднамеренных изменений соответствует уровню «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблице 2.

Таблица 2 - Метрологические и технические характеристики

Границы абсолютной погрешности (по уровню вероятности 0,95) определения координат местоположения потребителя в плане и высоты при работе по сигналам ГЛОНАСС (L1, код СТ) и GPS (L1, код С/А) при геометрическом факторе (PDOP) не более 3, м	±15
Пределы допускаемой абсолютной погрешности синхронизации внутренней шкалы времени устройства с национальной шкалой координированного времени UTC(SU), с	±1
Диапазон напряжения питания постоянного тока, В	от 10 до 50
Рабочий диапазон скоростей, м/с	от 0 до 70
Потребляемая мощность, Вт, не более	5
Степень защиты оболочки корпуса изделия, не менее	IP 54
Рабочие условия применения:	
температура окружающего воздуха, °С	от - 25
	до + 55
относительная влажность при 40 °C, %, не более	93 %
Масса, кг, не более	0,4
Габаритные размеры корпуса (длина х ширина х высота), мм, не более	130x90x30

Знак утверждения типа

наносится на титульный лист паспорта и руководства по эксплуатации типографским способом, на корпус устройства в виде наклейки.

Комплектность средства измерений

Комплект поставки устройства приведен в таблице 3.

Таблица 3 – Комплект поставки

Наименование	Обозначение	Количество,	Примечание
		шт.	
Бортовое устройство с	Бортовое устройство	1	
кабелем питания	«БК-СВП»		
Присоски для крепления		4	
Паспорт	ВРБЕ.464110.002 ПС	1	
Руководство по эксплуатации	ВРБЕ.464110.002 РЭ	1	
Методика поверки	074-30007-2016 МП	1	
Упаковочная коробка		1	

Поверка

осуществляется по документу 074-30007-2016 МП «Бортовое устройство «БК-СВП» Методика поверки», утвержденному Φ ГУП «СНИИМ» в июне 2016 г.

Основные средства поверки:

- Государственный вторичный эталон единицы времени и частоты ВЭТ 1-19: диапазон измерения частоты от 1 Γ ц до 40 Γ Γ ц, диапазон измерения интервалов времени от 1,0 · 10⁻⁹ до 1,0 · 10⁸ с, суммарная погрешность эталона $S_{\Sigma 0} \leq 1,0 \cdot 10^{-14}$, предел допускаемой абсолютной погрешности привязки шкалы времени относительно шкалы времени UTC(SU) в режиме синхронизации по сигналам Γ HCC Γ ЛОНАСС/GPS \pm 30 нс (рег. № 2.1.ZZH.0115.2013).
- Имитатор навигационных сигналов СН-3803М (рег. № 54309-13): предел допускаемого среднеквадратического отклонения (СКО) случайной составляющей основной погрешности формирования беззапросной дальности (псевдодальности) до НКА ГЛОНАСС/GPS по фазе дальномерного кода не более 0,1 м; предел СКО случайной составляющей основной погрешности формирования скорости изменения беззапросной дальности до НКА ГЛОНАСС/GPS не более 0,005 м/с; средняя квадратическая погрешность формирования местной шкалы времени на основе воспроизведения сигналов НКА ГЛОНАСС/GPS не более 50 нс.
- Частотомер универсальный CNT-90 (рег. № 41567-09): диапазон измеряемых частот от 0,001 Γ ц до 300 М Γ ц, диапазон измерения временных интервалов от минус 5 нс до 10^6 с, пределы допускаемой относительной погрешности измерения временных интервалов 0,6 нс (для 5 нс), 0,62 нс (для 100 мкс), 200 нс (для 1 с).

Знак поверки наносится на свидетельство о поверки или в паспорте «Бортовое устройство «БК-СВП». Паспорт ВРБЕ.464110.002 ПС, в виде оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в Руководстве по эксплуатации ВРБЕ.464110.002 РЭ «Бортовое устройство «БК-СВП».

Нормативные и технические документы, устанавливающие требования к бортовым устройствам «БК-СВП»

ГОСТ 8.750-2011 Государственная система обеспечения единства измерений. Государственная поверочная схема для координатно-временных средств измерений

Бортовое устройство «БК-СВП». Технические условия 4035-002-60531324-2015 ТУ

Изготовитель

Общество с ограниченной ответственностью "Глобальные системы автоматизации" (ООО «ГЛОСАВ»), ИНН: 7715755316

Юридический адрес: 127081, г. Москва, Ясный проезд, дом № 10

Почтовый адрес: 115114, г. Москва , 1-й Кожевнический пер, дом № 10

Тел: +7 (495) 644 33 59; +7 (495) 663 94 49 E-mail: <u>info@glosav.ru</u>; <u>commerce@glosav.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

Юридический адрес: 630004, г. Новосибирск, пр. Димитрова, 4 ФГУП «СНИИМ».

Почтовый адрес: 630004, г. Новосибирск, пр. Димитрова, 4 ФГУП «СНИИМ».

Тел./факс: (383) 210-08-14/210-13-60.

E-mail: director@sniim.ru.

Аттестат аккредитации Φ ГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель		
Руководителя Федерального		
агентства по техническому		
регулированию и метрологии		
	"	

С.С. Голубев« » 2016 г.

М. п.