ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РТ-ЭТ» в части электропотребления АО «НПП «Алмаз»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РТ-ЭТ» в части электропотребления АО «НПП «Алмаз» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных RTU-327LV (далее – УСПД), устройство синхронизации системного времени (далее – УССВ-2) и каналообразующую аппаратуру.

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер баз данных (БД) ООО «РТ-ЭТ», автоматизированные рабочие места персонала (АРМ) ООО «РТ-ЭТ», программное обеспечение (далее – ПО) «АльфаЦЕНТР», устройство синхронизации времени (далее – УСВ-2) и каналообразующую аппаратуру.

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в ОАО «АТС», филиал ОАО «СО ЕЭС» Саратовское РДУ и всем заинтересованным субъектам осуществляется от АРМ энергосбытовой организации ООО «РТ-ЭТ» по сети Internet в автоматическом режиме с использованием ЭЦП. АРМ энергосбытовой организации ООО «РТ-ЭТ» раз в сутки формирует и отправляет с помощью электронной почты по выделенному каналу связи по протоколу ТСР/IP отчеты в формате XML.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройствами синхронизации времени, УССВ-2 в составе ИВКЭ и УСВ-2 в составе ИВК, принимающими сигналы точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УССВ-2 и УСВ-2 не более ±1 с. Устройства синхронизации времени обеспечивают автоматическую коррекцию часов сервера БД и УСПД. Коррекция часов сервера БД и УСПД проводится при расхождении часов сервера БД, УСПД и времени приемника более чем на ±1 с. Коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±2 с. Погрешность часов компонентов АИИС КУЭ не превышает ±5 секунд в сутки.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР» версии не ниже 15.04, в состав которого входят модули, указанные в таблице 1. ПО «АльфаЦЕНТР» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «АльфаЦЕНТР».

Таблица 1 – Метрологические значимые модули ПО

Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПО «АльфаЦЕНТР»		
	Библиотека ac_metrology.dll		
Номер версии (идентификационный номер) ПО	15.04		
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

Комплексы измерительно-вычислительные для учета электрической энергии «АльфаЦЕНТР», в состав которых входит ПО «АльфаЦЕНТР», зарегистрированы в Федеральном информационном фонде по обеспечению единства измерений (Рег. № 44595-10).

Предел допускаемой дополнительной абсолютной погрешности ИВК «АльфаЦЕНТР», получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов ИВК «АльфаЦЕНТР».

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

	a 2 Cociub iismopii	Измерительные компоненты					Метрологические характеристики ИК		
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %	
1	2	3	4	5	6	7	8	9	
			РП-1 10	кВ					
1	РП-1 10 кВ, РУ-10 кВ,	ТПОЛ-10 Кл. т. 0,5S 400/5	НАМИТ-10-2 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	RTU- 327LV	активная	±1,1	±3,1	
	1 с.ш. 10 кВ, яч. 10	Зав. № 20799; Зав. № 20800	10000/100 Зав. № 2238150000001	Зав. № 0807150026	Зав. № 009689	реактивная	±2,7	±5,5	
2	РП-1 10 кВ, РУ-10 кВ,	ТПОЛ-10 Кл. т. 0,5S 400/5	НАМИТ-10-2 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	RTU- 327LV	активная	±1,1	±3,1	
	2 с.ш. 10 кВ, яч. 14 Зав. № 20190; Зав. № 20801 Зав. № 1153150000002 Зав. № 0806150731	* * * * * * * * * * * * * * * * * * * *	Зав. № 009689	реактивная	±2,7	±5,5			
	ТП-1 10/0,4 кВ								
3	ТП-1 10/0,4 кВ, РУ-0,4 кВ, 1 с.ш. 0,4 кВ, КЛ-0,4 кВ ф. 45 в сторону ВРУ-0,4 кВ АО «НПЦ «Алмаз- Фазотрон»	ТОП-0,66 Кл. т. 0,5S 100/5 Зав. № 5034794; Зав. № 5034760; Зав. № 5034809	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5Ѕ/1,0 Зав. № 1106150658	RTU- 327LV 3aв. № 009689	активная реактивная	±1,0 ±2,4	±4,1 ±6,9	

Продолжение таблицы 2

1	<u> 2</u>	3	4	5	6	7	8	9
	ТП-6 10/0,4 кВ							
4	ТП-6 10/0,4 кВ, РУ-0,4 кВ, 1 с.ш. 0,4 кВ, яч. 2	ТШП-0,66 Кл. т. 0,5S 300/5 Зав. № 5053297; Зав. № 5052036; Зав. № 5053277	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1106150087	RTU- 327LV 3aв. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9
5	ТП-6 10/0,4 кВ, РУ-0,4 кВ, 1 с.ш. 0,4 кВ, яч.6, КЛ-0,4 кВ в сторону ВРУ-0,4 кВ ООО «Ролекс»	ТШП-0,66 Кл. т. 0,5S 300/5 Зав. № 5052015; Зав. № 5052009; Зав. № 5053275	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1106150094	RTU- 327LV Зав. № 009689	активная реактивная	±1,0 ±2,4	±4,1 ±6,9
			ТП-2 10/0	,4 кВ				
6	ТП-2 10/0,4 кВ, РУ-0,4 кВ, ШМА 0,4 кВ, Р-023 в сторону ВРУ-0,4 кВ АО «НПЦ «Алмаз- Фазотрон»	ТШП-0,66 Кл. т. 0,5S 1000/5 Зав. № 5058476; Зав. № 5058475; Зав. № 5058468	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1112141448	RTU- 327LV Зав. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9
	ТП-4 10/0,4 кВ							
7	ТП-4 10/0,4 кВ, РУ-0,4 кВ, 1 с.ш. 0,4 кВ, яч. 13	ТОП-0,66 Кл. т. 0,5S 200/5 Зав. № 5035160; Зав. № 5035175; Зав. № 5035151	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1106150178	RTU- 327LV 3aв. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
8	ТП-4 10/0,4 кВ, РУ-0,4 кВ, 2 с.ш. 0,4 кВ, яч. 2	ТОП-0,66 Кл. т. 0,5S 200/5 Зав. № 5035312; Зав. № 5035286; Зав. № 5035297	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1106150078	RTU- 327LV 3aв. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9
9	ТП-4 10/0,4 кВ, РУ-0,4 кВ, 1 с.ш. 0,4 кВ, яч. 8	ТОП-0,66 Кл. т. 0,5S 200/5 Зав. № 5035167; Зав. № 5035174; Зав. № 5035140	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1106150155	RTU- 327LV 3aв. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9
10	ТП-4 10/0,4 кВ, РУ-0,4 кВ, ШМ-1200 0,4 кВ, КЛ-0,4 кВ в сторону ВРУ-0,4 кВ АО «НПЦ «Алмаз- Фазотрон»	Т-0,66 УЗ Кл. т. 0,5S 200/5 Зав. № 089886; Зав. № 089893; Зав. № 089894	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5Ѕ/1,0 Зав. № 1106150043	RTU- 327LV Зав. № 009689	активная реактивная	±1,0 ±2,4	±4,1 ±6,9

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
11	ТП-4 10/0,4 кВ, РУ-0,4 кВ, ШМ-1200 0,4 кВ, А3144, КЛ-0,4 кВ в сторону Корпус ЛУК ПР-3 0,4 кВ	ТШП-0,66 Кл. т. 0,5S 300/5 Зав. № 5051986; Зав. № 5051988; Зав. № 5052037	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5Ѕ/1,0 Зав. № 1106150163	RTU- 327LV 3aв. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9
12	ТП-4 10/0,4 кВ, РУ-0,4 кВ, ШМ-1200 0,4 кВ, А3144, КЛ-0,4 кВ в сторону Корпус ЛУК ПР-2 0,4 кВ	ТШП-0,66 Кл. т. 0,5S 300/5 Зав. № 5029431; Зав. № 5029454; Зав. № 5029443	-	ПСЧ-4ТМ.05МК.04 Кл. т. 0,5S/1,0 Зав. № 1106150168	RTU- 327LV 3aв. № 009689	активная	±1,0 ±2,4	±4,1 ±6,9

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98-1.02) Uном; ток (1.0-1.2) Іном, частота (50 ± 0.15) Γ ц; \cos j = 0.9 инд.;
- температура окружающей среды: ТТ и ТН от + 15 до + 35 °C; счетчиков от + 21 до + 25 °C; УСПД от + 10 до + 30 °C; ИВК от + 10 до + 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0,9-1,1) Uн₁; диапазон силы первичного тока (0,02-1,2) Ін₁; коэффициент мощности $\cos j (\sin j)$ 0,5–1,0 (0,87-0,5); частота $(50\pm0,4)$ Γ ц;
 - температура окружающего воздуха от 40 до + 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9 1.1) UH₂; диапазон силы вторичного тока (0.01 1.2) IH₂; коэффициент мощности cosj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40–60) %;
 - атмосферное давление (100±4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии СЭТ-4TM.03M от 40 до + 60 °C;
 - для счётчиков электроэнергии ПСЧ-4TM.05MK.04 от 40 до + 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
 - температура окружающего воздуха от +10 до +30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 12 от 40 до + 60 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности tв =2 ч;
- электросчётчик ПСЧ-4ТМ.05МК.04 среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t=2 ч;
- УСПД RTU-327LV среднее время наработки на отказ не менее T=40000 ч, среднее время восстановления работоспособности t=2 ч;
- сервер среднее время наработки на отказ не менее $T=70000\ \text{ч},$ среднее время восстановления работоспособности $t = 1\ \text{ч}.$

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 45 суток; сохранение информации при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «РТ-ЭТ» в части электропотребления АО «НПП «Алмаз» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

TT	T	D M	TC	
Наименование	Тип	Рег. №	Количество, шт.	
Трансформатор тока	ТПОЛ-10	47958-11	4	
Трансформатор тока	ТШП-0,66	47957-11	15	
Трансформатор тока	ТОП-0,66	47959-11	12	
Трансформатор тока	Т-0,66 У3	52667-13	3	
Трансформатор напряжения	НАМИТ-10-2	16687-13	2	
Счётчик электрической				
энергии	СЭТ-4TM.03М	36697-12	2	
многофункциональный				
Счётчик электрической				
энергии	ПСЧ-4ТМ.05МК.04	46634-11	10	
многофункциональный				
Устройство сбора и передачи	Устройство сбора и передачи RTU-327LV		1	
данных	K1U-327LV	41907-09	1	
Устройство синхронизации УСВ-2		41681-09	1	
времени	JCD-2	41001-07	1	
Устройство синхронизации	УССВ-2	54074-13	1	
системного времени	yCCD-2	34074-13	1	
Программное обеспечение	«АльфаЦЕНТР»	-	1	
Методика поверки	-	-	1	
Паспорт-Формуляр	-	-	1	

Поверка

осуществляется по документу МП 206.1-013-2016 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РТ- Θ Т» в части электропотребления АО «НПП «Алмаз». Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в августе 2016 г.

Основные средства поверки:

- для трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145 РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки», согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.:
- счетчиков ПСЧ-4ТМ.05МК.04 по документу ИЛГШ.411152.167РЭ1 «Счетчик электрической энергии ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;

- УСПД RTU-327LV по документу ДЯИМ.466215.007 МП «Устройства сбора и передачи данных серии RTU-327. Методика поверки», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2009 г.;
- УСВ-2 по документу ВЛСТ 237.00.001И1 «Устройство синхронизации времени УСВ-2. Методика поверки», утвержденным ФГУП «ВНИИФТРИ» 12.05.2010 г;
- УССВ-2 по документу ДЯИМ.468213.001МП «Устройства синхронизации системного времени УССВ-2. Методика поверки», утвержденному руководителем ГЦИ СИ ФБУ «Ростест-Москва» 17 мая 2013 г.
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от 20 до + 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0.01 до 19.99 мТл.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «РТ-ЭТ» в части электропотребления АО «НПП «Алмаз», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации N = 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РТ-ЭТ» в части электропотребления АО «НПП «Алмаз»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Акционерное общество «РЭС Групп»

(АО «РЭС Групп») ИНН 3328489050

Юридический (почтовый) адрес: 600017, Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Тел.: (4922) 44-87-06 Факс: (4922) 33-44-86 E-mail: post@orem.su

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2016 г.