ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности АИИС КУЭ ПС 220 кВ Металлургическая

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности АИИС КУЭ ПС 220 кВ Металлургическая (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень – включает в себя измерительные трансформаторы тока (далее по тексту – TT), измерительные трансформаторы напряжения (далее по тексту – TH), счетчики активной и реактивной электроэнергии (далее по тексту – Счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

Второй уровень – информационно-вычислительный комплекс электроустановки (далее по тексту – ИВКЭ), включающий в себя устройства сбора и передачи данных (далее по тексту – УСПД), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями АИИС КУЭ, коммутационное оборудование;

Третий уровень – информационно-вычислительный комплекс (далее по тексту– ИВК). ИВК располагается в ПАО «ФСК ЕЭС» и входит в систему автоматизированную информационно-измерительную коммерческого учета электрической энергии Единой национальной системы, внесенную в Государственный реестр средств измерений под № 59086-14, которая обеспечивает доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии (далее по тексту - ОРЭМ).

ИВК включает в себя: сервера сбора, сервера баз данных, системы хранения данных, подсистемы интеграции, библиотеки резервного копирования, устройства синхронизации системного времени на базе радиосервера точного времени РСТВ - 01; автоматизированные рабочие места (далее по тексту APM) на базе ПК; каналообразующая аппаратура; средства связи и передачи данных и специальное программное обеспечение (далее по тексту - СПО).

АИИС КУЭ обеспечивает измерение следующих основных параметров энергопотребления:

- количества активной и реактивной электроэнергии за определенные интервалы времени по каналам учета, группам каналов учета и объекту в целом, с учетом временных (тарифных) зон, включая прием и отдачу электроэнергии;
- количества активной и реактивной электрической энергии с дискретностью 30 минут (30-минутные приращения электроэнергии) и нарастающим итогом на начало расчетного периода (далее результаты измерений), используемое для формирования данных коммерческого учета;
- средних значений активной и реактивной мощности за определенные интервалы времени по каналам учета, группам каналов учета и объекту в целом;
 - календарного времени и интервалов времени.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на

измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится сбор и хранение результатов измерений и данных о состоянии средств измерений (журналы событий) счетчиков и УСПД. Далее информация поступает на ИВК АИИС КУЭ.

ИВК АИИС КУЭ единой национальной (общероссийской) электрической сети (далее по тексту – ЕНЭС) автоматически опрашивает УСПД ИВКЭ. Опрос УСПД выполняется с помощью сети передачи данных ЕЦССЭ по основному или резервному каналу.

ИВК автоматически производит обработку измерительной информации и передает полученные данные в базу данных (далее по тексту – БД) серверов ИВК АИИС КУЭ ЕНЭС. В серверах БД ИВК АИИС КУЭ ЕНЭС информация о результатах измерений электрической энергии и журналы событий ИВК и полученные с уровней ИВКЭ и ИИК автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру.

Один раз в сутки в ИВК АИИС КУЭ ЕНЭС формируется файл отчета с результатами измерений, в формате XML, и после формирования передается в программно-аппаратный комплекс коммерческого оператора (ПАК КО) АО «АТС» и в АО «СО ЕЭС». Формирование может производиться как в ручном, так и в автоматическом режиме.

По запросу коммерческого оператора (далее по тексту – KO) обеспечивается дистанционный доступ к результатам измерений, данным о состоянии средств измерений с сервера или APM ИВК АИИС КУЭ на всех уровнях АИИС КУЭ.

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

Система обеспечения единого времени (СОЕВ) формируется на всех уровнях АИИС КУЭ. СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает синхронизацию времени от источника точного времени при проведении измерений количества электроэнергии с точностью не хуже ±5,0 с. СОЕВ привязана к единому календарному времени. Для синхронизации шкалы времени в АИИС КУЭ в состав ИВК входит устройство синхронизации системного времени (УССВ) на базе радиосервера точного времени РСТВ - 01. Не реже одного раза в час происходит сравнение показаний часов компонентов системы и УССВ. При необходимости часы у компонентов системы корректируются. Журналы событий отражают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Взаимодействие между уровнями АИИС КУЭ осуществляется по оптоволоконной связи или по сети Ethernet, задержками в линиях связи пренебрегаем ввиду малости значений.

Программное обеспечение

Специализированное программное обеспечение (СПО) АИИС КУЭ ЕНЭС строится на базе центров сбора и обработки данных, которые объединяются в иерархические многоуровневые комплексы и служат для объединения технических и программных средств, позволяющих собирать данные коммерческого учета со счетчиков электрической энергии и УСПД.

Идентификационные данные программного обеспечения, установленного в АИИС КУЭ ПС 220 кВ Металлургическая, приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
1	2	
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС	
Номер версии	не ниже 1.00	
(идентификационный номер) ПО	не ниже 1.00	
Цифровой идентификатор ПО	d233ed6393702747769a45de8e67b57e	
Другие идентификационные данные (если	DataServer.exe, DataServer_USPD.exe	
имеются)	DataServer.exe, DataServer_USFD.exe	
Примечание – Алгоритм вычисления цифрового идентификатора ПО – MD5 Хэш сумма		
берется от склейки файлов: DataServer.exe, DataServer_USPD.exe		

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4 нормированы с учетом ПО.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты - высокий, в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ, а также метрологические и технические характеристики приведены в таблицах 2, 3, 4, 5

Таблица 2 - Основные технические характеристики

Таблица 2 - Основные технические характеристики	
Характеристика	Значение
Параметры питающей сети переменного тока:	
Напряжение, В	220±22
частота, Гц	50±1
Диапазон допускаемых изменений напряжения переменного тока в	$0,99 \cdot U_{\text{ном}}$ до $1,01 \cdot U_{\text{ном}}$
первичной обмотке измерительного трансформатора напряжения на	
входе ИК	
Температура окружающей среды для:	
- счетчиков электрической энергии, °С	от +5 до +40
- трансформаторов тока и напряжения, °С	от -42 до +38
Индукция внешнего магнитного поля в местах установки счетчиков,	
не более, мТл	0,5
Мощность, потребляемая вторичной нагрузкой, подключаемой к ТТ	
и ТН, % от номинального значения	от 25 до 100
Потери напряжения в линии от ТН к счетчику, не более, %	0,1
Первичные номинальные напряжения, кВ	220
Первичные номинальные токи, кА	1
Номинальное вторичное напряжение, В	100
Номинальный вторичный ток, А	5
Диапазон допускаемых изменений силы переменного электрического	от $0.01 \cdot I_{\text{ном}}$ до $1.2 \cdot I_{\text{ном}}$
тока в первичной обмотке измерительного трансформатора тока	
Количество точек измерения, шт.	4
Интервал задания границ тарифных зон, мин	30
Погрешность системного времени не превышает, с	±5
Средний срок службы системы, лет	15

Таблица 3 - Состав ИК АИИС КУЭ

		Измерительные компоненты				
№ ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик статический трёхфазный переменного тока активной/реактивной энергии	УСПД	Вид электроэнер гии
1	2	3	4	5	6	7
			ПС 220 кВ Металлургическ	кая		
	D.T. 440 D	ΤΟΓΦ-220	CPA 72-550	СЭТ-4ТМ.03М, СЭТ-		
	ВЛ 220 кВ	(исп. ТОГФ-220III)	(исп. СРА 245)	4TM.02M		активная
1	Металлургическая	Класс точности 0,2S	Класс точности 0,2	(исп. СЭТ-4ТМ.03М)		реактивная
	- Сталь I цепь	I1/I2 =1000/5	$U1/U2 = 220000: \sqrt{3}/100: \sqrt{3}$	Класс точности 0,28/0,5		F
		№ ГР № 46527-11	№ ГР № 47846-11	№ ГР № 36697-12	_	
		ТОГФ-220	CPA 72-550	CЭT-4TM.03M, СЭТ-		
	ВЛ 220 кВ	(исп. ТОГФ-220ІІІ)	(исп. СРА 245)	4TM.02M		активная
2	Металлургическая	Класс точности 0,2S	Класс точности 0,2	(исп. СЭТ-4ТМ.03М)		реактивная
	- Сталь II цепь	I1/I2 =1000/5	$U1/U2 = 220000: \sqrt{3}/100: \sqrt{3}$	Класс точности 0,28/0,5	TK16L.31	Petricing
		№ ГР № 46527-11	№ ГР № 47846-11	№ ГР № 36697-12	- ΓP № 36643-07	
		ТОГФ-220	CPA 72-550	СЭТ-4ТМ.03М, СЭТ-	11 112 200 12 07	
	3 Ввод 220 кВ АТ-1	(исп. ТОГФ-220III)	(исп. СРА 245)	4TM.02M		активная
3		Класс точности 0,2S	Класс точности 0,2	(исп. СЭТ-4ТМ.03М)		реактивная
		I1/I2 =1000/5	$U1/U2=220000:\sqrt{3}/100:\sqrt{3}$	Класс точности 0,28/0,5		реактивная
		№ ГР № 46527-11	№ ГР № 47846-11	№ ГР № 36697-12		
		ТОГФ-220	CPA 72-550	CЭT-4TM.03M, СЭТ-		
	Ввод 220 кВ АТ-2	(исп. ТОГФ-220III)	(исп. СРА 245)	4TM.02M		активная
4		Класс точности 0,2S	Класс точности 0,2	(исп. СЭТ-4ТМ.03М)		реактивная
		I1/I2 =1000/5	$U1/U2 = 220000: \sqrt{3}/100: \sqrt{3}$	Класс точности 0,2S/0,5		рсактивная
		№ ГР № 46527-11	№ ГР № 47846-11	№ ГР № 36697-12		

Таблица 4- Пределы допускаемых относительных погрешностей ИК при измерении

электрической энергии для рабочих условий эксплуатации, %

№ ИК	Состав ИИК	cos φ (sinφ)	$\begin{array}{c} \delta_{1(2)\%I} \\ I_{1(2)\%} \leq I < I_{5\%} \end{array}$	$\begin{array}{c} \delta_{5\%I} \\ I_{5\%} \leq I < I_{20\%} \end{array}$	$\begin{array}{c} \delta_{20\%I} \\ I_{20\%} \leq I < I_{100\%} \end{array}$	$\begin{array}{c} \delta_{100\%I} \\ I_{100\%} \leq I < I_{120\%} \end{array}$
	TT класс точности 0,2S	1	±1,1	±0,8	±0,7	±0,7
	ТН класс точности 0,2 Счетчик класс	0,8 (емк.)	±1,5	±1,1	±0,9	±0,9
	точности 0,2S (активная энергия)	0,5 (инд.)	±2,1	±1,4	±1,2	±1,2
1	ТТ класс точности 0,2S	0,8 (0,6)	±4,0	±3,8	±3,5	±3,5
	ТН класс точности 0,2 Счетчик класс точности 0,5 (реактивная энергия)	0,5 (0,87)	±3,8	±3,7	±3,5	±3,5

Таблица 5- Пределы допускаемых основных относительных погрешностей ИК при измерении электрической энергии, %

No	ipii iookon onopiini, ,	cos φ	$\delta_{1(2)\%I}$	$\delta_{5\%I}$	$\delta_{20\%I}$	$\delta_{100\%I}$
ИК	Состав ИИК	(sin ϕ)	$I_{1(2)} \% \le I < I_{5\%}$	$I_{5\%} \le I < I_{20\%}$	$I_{20\%} \le I < I_{100\%}$	$I_{100\%} \le I < I_{120\%}$
	ТТ класс точности 0,2S	1	±1,0	±0,5	±0,4	±0,4
	ТН класс точности 0,2 Счетчик класс	0,8 (емк.)	±1,3	±0,8	±0,6	±0,6
1-4	точности 0,2S (активная энергия)	0,5 (инд.)	±2,0	±1,2	±0,9	±0,9
	ТТ класс точности 0,2S	0,8 (0,6)	±2,3	±1,9	±1,3	±1,3
	ТН класс точности 0,2 Счетчик класс точности 0,5 (реактивная энергия)	0,5 (0,87)	±2,0	±1,8	±1,2	±1,2

Примечания:

- 1. Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$;
- 2. Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 до плюс 40°C;
- 3. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 4. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с такими же метрологическими характеристиками, перечисленными в таблице 3.

Знак утверждения типа

наносится на титульный лист формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Кол-во, шт.	
1	2	
Трансформатор тока	12	
Трансформатор напряжения	6	
Счётчики электрической энергии многофункциональные	4	
УСПД	1	
Программное обеспечение «СПО АИИС КУЭ ЕНЭС»	1	
Устройства синхронизации времени PCTB-01*	В соответствии с	
	примечанием	
Методика поверки П2200183-НВЦП.210.16.019-УЭ1.МП	1	
Формуляр П2200183-НВЦП.210.16.019-УЭ1.ФО	1	
Примечание: * - количество определено технической документацией.		

Поверка

осуществляется по документу П2200183-НВЦП.210.16.019-УЭ1.МП «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности АИИС КУЭ ПС 220 кВ Металлургическая. Методика поверки», утвержденному ФГУП «ВНИИМС» в июне 2016 г.

Основные средства поверки:

- для трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011«ГСИ. Трансформаторы напряжения. Методика поверки»;
- средства измерений по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения пепей».
- средства измерений МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М в соответствии с документом ИЛГШ.411152.145 РЭ1
- для УСПД ТК16L по документу «Устройство сбора и передачи данных ТК16L для автоматизации измерений и учета энергоресурсов. Методика поверки» АВБЛ.468212.041 МП, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в декабре 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы GlobalPositioningSystem (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Знак поверки наносится на свидетельство о поверке, оформленное в соответствии с приказом Минпромторга России № 1815 от 02.08.2015 года «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «Методика (метод) измерений количества электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности АИИС КУЭ ПС 220 кВ Металлургическая». П2200183-НВЦП.210.16.019-УЭ1.МИ

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности АИИС КУЭ ПС 220 кВ Металлургическая

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

АО «Электроцентроналадка»

Адрес: Россия, 121059, г. Москва, Бережковская наб., 16, корп. 2

Почтовый адрес: Россия, 121059, г. Москва, а/я 1

Телефон: +7(495)-221-67-00 Факс: +7(499)-240-45-79

ИНН 7730035496

e-mail: ao@ecn.ru, www.ecn.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

(ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Телефон: +7 (495)437-55-77 Факс: +7 (495)437 56 66

e-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С.Голубев

М.п.	**	11	2016 г.
IVI.II.			20101.