ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень включает в себя измерительные трансформаторы тока (далее по тексту TT), измерительные трансформаторы напряжения (далее по тексту TH), счетчик активной и реактивной электроэнергии (далее по тексту Счетчик), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 41907-09), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК, и содержит программное обеспечение (далее ПО) «АльфаЦЕНТР», с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.
- 3-й уровень измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее по тексту ИВК), реализованный на базе серверного оборудования (серверов сбора данных основного и резервного, сервера управления), ПО «ЭНЕРГИЯ-АЛЬФА», включающий в себя каналы сбора данных с уровня регионального Центра энергоучета, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчика при помощи технических средств приема-передачи данных поступает на входы УСПД регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчика, УСПД и ИВК. АИИС КУЭ оснащена устройством синхронизации системного времени (УССВ), синхронизирующим часы измерительных компонентов системы по сигналам точного времени, получаемым от GPS-приемника. УССВ обеспечивает автоматическую синхронизацию часов сервера, при повышении порога ± 1 с происходит коррекция часов сервера. Часы УСПД синхронизированы по времени с часами сервера, сличение происходит при каждом сеансе связи УСПД-сервер, коррекция осуществляется при расхождении показаний часов на ± 1 с. Сравнение показаний часов счетчика и УСПД производится во время сеанса связи со счетчиком (1 раз в 30 минут). Корректировка осуществляется при расхождении показаний часов счетчика и УСПД ± 2 с, но не реже 1 раза в сутки. СОЕВ обеспечивает корректировку времени АИИС КУЭ с точностью не хуже ± 5 с/сут.

Журналы событий счетчика электроэнергии, УСПД и сервера отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

На уровне регионального Центра энергоучёта используется ПО «АльфаЦЕНТР», состав и идентификационные данные указаны в таблице 1.1. С помощью ПО «АльфаЦЕНТР» решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов. ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО «АльфаЦЕНТР».

Уровень ИВК Центра сбора данных содержит ПО «ЭНЕРГИЯ-АЛЬФА», состав и идентификационные данные указаны в таблице 1.2. С помощью ПО «ЭНЕРГИЯ-АЛЬФА» решаются задачи автоматического накопления, обработки, хранения, отображения измерительной информации и передачи данных субъектам ОРЭМ.

Таблица 1.1 - Идентификационные данные ПО «АльфаЦЕНТР»

Taosinga 1:1 Tigoti inquinagii omisso gamisso 110 % aispage 21111 //				
Идентификационные данные (признаки)	Значение			
1	2			
Идентификационное наименование ПО	АльфаЦЕНТР			
Номер версии (идентификационный номер) ПО	не ниже 14			
Цифровой идентификатор ПО	0E90D5DE7590BBD89594906C8DF82AC2			
Другие идентификационные данные, если имеются	ac_metrology.dll			

Таблица 1.2 - Идентификационные данные ПО «ЭНЕРГИЯ-АЛЬФА»

Идентификационные данные (признаки)	Значение
1	2
Идентификационное наименование ПО	ЭНЕРГИЯ-АЛЬФА
Номер версии (идентификационный номер) ПО	не ниже 2.0.13.6
Цифровой идентификатор ПО	A61ADC9069FB03A0069DD47BB71DC768
Другие идентификационные данные, если имеются	enalpha.exe

ПО ИВК «АльфаЦЕНТР» не влияет на метрологические характеристики системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3 нормированы с учетом ПО.

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области приведен в таблице 2.

Таблица 2 - Состав 1-го и 2-го уровней АИИС КУЭ

No	Цаимоноронно	Состав 1-го и 2-го уровней АИИС КУЭ				
№ Наименование ИК объекта		Трансформатор тока	Трансформатор напряжения	Счетчик	УСПД	
1	2	3	4	5	6	
1	ТП "Лейпясуо" В ЛГвр4 СШ1-35	KSOH (4MC7) кл.т 0,2S Ктт = 300/5 Зав. № 10/30636559; 10/30636558; 10/30636557 Госреестр № 35056-07	GBE40,5 (4МТ40,5) кл.т 0,2 Ктн = (350000/√3)/(100/√3) Зав. № 11/30789193; 11/30789191; 11/30789192 Госреестр № 50639- 12	A1802RALQ-P4GB- DW-4 кл.т 0,2S/0,5 Зав. № 01292642 Госреестр № 31857- 11	RTU-327 Зав. № 001509	

Таблица 3 - Метрологические характеристики ИК АИИС КУЭ

		Пределы допускаемой относительной погрешности ИК при			
		измерении активной электрической энергии в рабочих условиях			
Номер ИК	cosφ	эксплуатации АИИС КУЭ (d), %			
		$d_{1(2)\%}$,	$d_{5\%},$	$d_{20\%},$	d _{100 %} ,
		$I_{1(2)\%}$ £ $I_{изм} < I_{5\%}$	$I_{5\%}$ £ $I_{_{13M}}$ < $I_{20\%}$	$I_{20} \% \mathfrak{E} I_{_{\rm H3M}} \!\! < \!\! I_{100\%}$	I_{100} %£ $I_{изм}$ £ $I_{120\%}$
	1,0	±1,2	± 0.8	± 0.8	±0,8
1	0,9	±1,2	$\pm 0,9$	± 0.8	±0,8
(Сч. 0,2S; TT 0,2S; TH	0,8	±1,3	$\pm 1,0$	±0,9	±0,9
0,2)	0,7	±1,5	±1,1	±0,9	±0,9
	0,5	±1,9	±1,4	±1,2	±1,2
		Пределы допускаемой относительной погрешности ИК при			
		измерении реактивной электрической энергии в рабочих			
Номер ИК	cosφ	условиях эксплуатации АИИС КУЭ (d), %			
-		d _{1(2)%} ,	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,
		$I_{1(2)\%} \mathfrak{E} I_{_{M3M}} < I_{_{5} \%}$	I_{5} %£ $I_{изм}$ < I_{20} %	$I_{20} \% \mathcal{E} I_{_{\rm H3M}} \!\! < \!\! I_{100\%}$	I_{100} %£ $I_{изм}$ £ $I_{120\%}$
	0,9	±2,5	±2,1	$\pm 1,8$	±1,8
1	0,8	±2,3	±2,0	±1,7	±1,7
(Сч. 0,5; TT 0,2S; TH 0,2)	0,7	±2,1	±1,9	±1,6	±1,6
	0,5	±1,9	±1,8	±1,5	±1,5

Примечания:

- 1 Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (30 мин).
- 2 В качестве характеристик относительной погрешности указаны пределы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95;
 - 3 Нормальные условия эксплуатации:
- параметры сети: диапазон напряжения от $0.99 \cdot \text{U}$ ном до $1.01 \cdot \text{U}$ ном; диапазон силы тока от 0.01 Іном до $1.2 \cdot \text{I}$ ном; частота (50 ± 0.15) Γ ц;
- температура окружающего воздуха: ТТ и ТН от минус 40 до плюс 50 °C; счетчика от плюс 18 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - 4 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от $0.9 \cdot \text{Uh1}$ до $1.1 \cdot \text{Uh1}$; диапазон силы первичного тока от 0.01 Ih1 до 1.2 Ih1; частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от минус 40 до плюс 50 °C.

Для счетчика электроэнергии:

- параметры сети: диапазон вторичного напряжения от $0.8 \cdot \text{UH2}$ до $1.2 \cdot \text{UH2}$; сила тока от $0.01 \cdot \text{I}$ ном до $1.2 \cdot \text{I}$ ном; частота $(50 \pm 0.4) \Gamma_{\text{U}}$;
 - температура окружающего воздуха от минус 40 до плюс 65 °C.
- 5 Допускается замена измерительных трансформаторов и счетчика электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на подстанции ОАО "РЖД" порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 6 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2 активная, реактивная.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии «Альфа A1800» среднее время наработки на отказ не менее 120000 часов;
- УСПД среднее время наработки на отказ не менее 100 000 часов, среднее время восстановления работоспособности 1 час.
 - ИВК среднее время наработки на отказ не менее 70000 часов;

Надежность системных решений:

- защита от кратковременных сбоев питания УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий счетчика и УСПД фиксируются факты:

- параметрирования;
- пропадания напряжения;
- коррекции времени;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - пароль на счетчике электрической энергии;
 - пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчике электрической энергии (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере ИВК (функция автоматизирована).

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу 45 суток; сохранение информации при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений, состояний средств измерений не менее 5 лет.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Tuosingu Tuomisiekinoeibiniite ky		1
Наименование	Обозначение (Тип)	Кол-во, шт.
1	2	3
Трансформаторы тока	KSOH (4MC7)	3
Трансформаторы напряжения	GBE40,5 (4MT40,5)	3
Счетчик электрической энергии трехфазные многофункциональные	A1802RALQ-P4GB-DW-4	1
Устройство сбора и передачи данных	RTU-327	1
Комплексы измерительно-	«АльфаЦЕНТР»	1
вычислительные для учета электроэнергии	«ЭНЕРГИЯ-АЛЬФА»	1
Методика поверки	РТ-МП-3549-500-2016	1
Паспорт-формуляр	1037739877295.411711.021.ПС-ФО	1

Поверка

осуществляется по документу РТ-МП-3549-500-2016 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области. Методика поверки», утвержденному ФБУ «Ростест-Москва» 16.09.2016 г. Знак поверки наносится на свидетельство о поверке, оформленное в соответствии с приказом Минпромторга России № 1815 от 02.07.2015 года «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

Основные средства поверки:

- для трансформаторов тока по ГОСТ 8.217-2003;
- для трансформаторов напряжения по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-2011;

- для счетчика электроэнергии «Альфа A1800» по документу «Счетчик электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г. и документу «Счетчик электрической энергии трехфазные многофункциональные Альфа A1800. Дополнение к методике поверки ДЯИМ.411152.018 МП, утвержденному в 2012 г.
- для УСПД RTU-327 по документу ДЯИМ.466215.007 МП «Устройства сбора и передачи данных RTU-327. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г:
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до + 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %, номер в Государственном реестре средств измерений № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

«Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области. Свидетельство об аттестации методики измерений № 1954/500-RA.RU.311703-2016 от 13.09.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Октябрьской ЖД - филиала ОАО «Российские железные дороги» в границах Ленинградской области

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

Изготовитель

Открытое акционерное общество «Российские железные дороги» (ОАО «РЖД»)

ИНН 7708503727

Адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: +7 (499) 262-60-55 Факс: +7 (499) 262-60-55

E-mail: info@rzd.ru/
http://www.rzd.ru/

Заявитель

Общество с ограниченной ответственностью «РЕСУРС» (ООО «РЕСУРС»)

Юридический адрес: 119415, г. Москва, пр. Вернадского, д. 39, этаж 4, помещение 1, комната 13

Тел.: +7 (926) 878-27-26

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Тел.: +7 (495) 544-00-00

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	Мп	// \	2016 1