ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры многофункциональные сбора и передачи данных КСОД

Назначение средства измерений

Контроллеры многофункциональные сбора и передачи данных КСОД (далее - контроллеры), предназначены для измерения времени, синхронизации и поддержания единого времени в составе автоматизированных систем коммерческого учета энергоресурсов, измерения и преобразования количества импульсов от первичных счетчиков энергоресурсов с импульсным выходом в количество энергоресурсов, а также автоматического сбора, хранения и обработки данных от первичных счетчиков энергоресурсов через встроенные интерфейсы RS-232, RS-485, CAN.

Описание средства измерений

Принцип действия контроллеров заключается в сборе, обработке, преобразовании с учетом астрономического времени измеренных входных сигналов (электрической энергии и мощности, расхода холодной и горячей воды, расхода газа) от соответствующих первичных счетчиков энергоресурсов либо с импульсным выходом, либо поддерживающих открытые протоколы обмена по цифровым интерфейсам, а также корректировки часов по сигналам устройства синхронизации системного времени.

При этом для преобразования импульсных сигналов в цифровые необходимо применять преобразователи «IMPuls - RS-485», входящие в комплект поставки.

Контроллеры предназначены для работы в составе информационно - измерительных систем контроля и учета потребления энергоресурсов в качестве их основного элемента.

В контроллер встроен GSM/GPRS - модем передачи данных стандартов EGSM900/DCS1800/PCS1900.

Контроллеры реализуют следующие функции:

- сбор информации о расходе электроэнергии и мощности либо непосредственно от микропроцессорных первичных счетчиков энергоресурсов оснащенных цифровыми интерфейсами RS-485/CAN, либо через промежуточные преобразователи интерфейсов Ethernet RS-485 (при большом количестве счетчиков);
- автоматическое распознавание подключенных первичных счетчиков энергоресурсов и их количества при включении контроллеров в работу;
- сбор информации о расходе электроэнергии и мощности от микропроцессорных первичных счетчиков энергоресурсов, имеющих PLC модемы для силовых линий 220 В, через промежуточные устройства накопления информации (концентраторы), оснащенные цифровыми интерфейсами RS-232/485;
- сбор информации о расходе электроэнергии и мощности от микропроцессорных первичных счетчиков энергоресурсов, имеющих импульсные выходы, либо через преобразователи «IMPuls RS-485», входящие в комплект поставки, либо через промежуточные счетчики импульсов других производителей, внесенные в Федеральный информационный фонд по обеспечению единства измерений, оснащенные цифровыми интерфейсами RS-232/485;
- реализация не менее 4-х поддерживаемых тарифов учета (дифференцированных по зонам суток);
- сбор и хранение данных, а также формирование выходных данных и служебных параметров;
- ведение общего журнала событий в системе, ведение журналов для различных типов событий, фильтрации и сортировки в журналах;
- выполнение операций квитирования событий, маскирования событий, в том числе групповое маскирование по типу, классу, приоритету и др.;

- выработка системного внутреннего времени (секунды, минуты, часы) и календаря (число, месяц, год), учет зимнего и летнего времени, рабочих и нерабочих дней, а также длительности расчетного периода с помощью энергонезависимых часов;
- коррекция системного времени в ходе сеансов связи с центрами сбора и обработки информации;
- автоматическая корректировка часов обслуживаемых микропроцессорных счетчиков один раз в сутки в соответствии с собственным системным временем;
- возможность работы как в локальном режиме, так в режиме обмена информацией с удаленным центром сбора и обработки информации. При работе в локальном режиме контроллер осуществляет сбор и архивирование информации в энергонезависимой памяти. При работе в режиме обмена данными передача последних осуществляется по запросу центрального сервера сбора и обработки информации;
 - обеспечение защиты от несанкционированного доступа к данным;
- передача информации в центр (центры) сбора и обработки информации по следующим видам каналов телекоммуникации: радиоканалы, радиорелейные каналы, каналы сотовой связи, каналы спутниковой связи, каналы связи по силовой сети;
- прием, обработка и обмен с верхним уровнем управления стандартными сигналами телемеханики (сигналы телесигнализации, телеизмерения, и телеуправления), сбор и регистрация сигналов телемеханики в реальном масштабе времени с генерацией соответствующих меток времени;
 - комплексная обработка информации;
- непрерывное наблюдение за всеми параметрами и непрерывное наблюдение за состоянием технологического оборудования, автоматической архивации накопленной информации;
 - прием информации от устройств телемеханики по протоколам обмена Modbus;
 - обмен информацией с верхним уровнем управления по протоколам Modbus;
- осуществление как спорадической (событийной), так и периодической передачи данных по протоколам Modbus, а также передача по запросу;
 - организация подсистемы «единого времени»;
- возможность построения распределенной автоматизированной системы управления технологическими процессами (далее АСУТП), состоящей из нескольких контроллеров, объединенных в единую информационную сеть;
- обмен информацией между контроллерами внутри системы и передача данных на верхний уровень по любому из перечисленных каналов связи (интерфейсов) RS-232, RS-485, Ethernet, FO (оптоволоконные линии связи), через модемы на выделенную медную пару, на коммутируемую линию, на силовую кабельную линию, надтональный модем, радиомодем с выходом на радиостанцию, сотовый радиомодем стандарта GSM/GPRS.

Контроллеры позволяют собирать информацию с датчиков нижнего уровня АСУТП различных приборов учета.

Контроллеры позволяют производить обмен информацией с цифровыми устройствами и системами в следующих протоколах:

- МЭК 61850-8-1;
- ΓΟCT P MЭK 60870-5-101/103/104;
- Modbus.

В случае использования контроллеров для задач учета, все подключаемые к ним первичные счетчики энергоресурсов должны иметь свидетельства об утверждении типа средств измерений, быть аттестованы в установленном порядке, иметь действующие свидетельства о метрологической поверке.

В качестве первичных счетчиков энергоресурсов и элементов системы учета могут применяться:

- счетчики холодной и горячей воды, изготовленные по ГОСТ 14167-83, ГОСТ Р 5060-93, ГОСТ Р 50193.1-92;
 - счетчики природного газа, изготовленные по ГОСТ Р 50818-95;
 - измерительные трансформаторы тока, изготовленные по ГОСТ 7746-2001;
 - измерительные трансформаторы напряжения, изготовленные по ГОСТ 1983-2001;
- счетчики электрической энергии, изготовленные по ГОСТ Р 52320-2005, ГОСТ Р 52321-2005, ГОСТ Р 52322-2005, ГОСТ Р 52323-2005, ГОСТ В 52323-2005, ГОСТ В 52323-2005, ГОСТ В 52323-2012 (IEC 62053-21:2003), ГОСТ 31819.22-2012 (IEC 62053-22:2003), ГОСТ 31819.11-2012 (IEC 62053-11:2003);
- приборы для измерения параметров электрической энергии (активная и реактивная мощности, действующие значения напряжения и силы переменного тока, частоты), изготовленные по ГОСТ 22261-94;
 - теплосчетчики, изготовленные по ГОСТ P 51649-2000, ГОСТ P EH 1434-1-2011;
 - счетчики импульсов;
 - устройства системы обеспечения единого времени (СОЕВ);
 - реклоузеры и т.д.

Контроллеры выпускаются в разных исполнениях, отличающихся друг от друга напряжением питания, количеством и типом входов и выходов, материалом корпуса, типом поддерживаемых интерфейсов связи, наличием или отсутствием встроенного GSM-модема. Информация об исполнении указана в структуре условного обозначения представленной на рисунке 1.

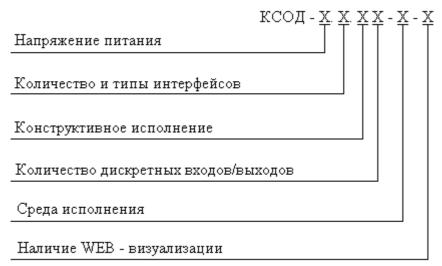


Рисунок 1 - Структура условного обозначения информация об исполнении контроллера

Количество и типы поддерживаемых интерфейсов связи:

- 03 один интерфейс RS-232, два интерфейса RS-485;
- 04 один интерфейс RS-232, два интерфейса CAN;
- 05 один интерфейс RS-232, два интерфейса RS-485, интерфейс USB;
- 06 один интерфейс RS-232, два интерфейса CAN, интерфейс USB;
- 07 пять интерфейсов RS-485, три интерфейс RS-232, два интерфейса Ethernet.

Конструктивное исполнение:

0 - пластиковый корпус с уровнем защиты IP20, предназначенный для настенного крепления или крепления на DIN-рейку, встроенный GSM - модем, работа с одной SIM - картой;

- 1 металлический корпус с уровнем защиты IP54, настенного крепления, встроенный GSM модем, работа с одной SIM картой.
- 0D пластиковый корпус с уровнем защиты IP20, предназначенный для настенного крепления или крепления на DIN-рейку, встроенный GSM модем, работа с двумя SIM картами;
- 1D металлический корпус с уровнем защиты IP54, настенного крепления, встроенный GSM модем, работа с двумя SIM картами;
- 2 пластиковый корпус с уровнем защиты IP20, предназначенный для настенного крепления или крепления на DIN-рейку без встроенного GSM модема.

Количество дискретных входов/выходов:

- 0 4 входа, 4 входа/выхода;
- 1 4 входа, 4 входа/выхода, 4 выхода;
- 2 входы/ выходы отсутствуют.

Среда исполнения:

ТЛ - En-Logic SCADA - OBEH «Телемеханика ЛАЙТ».

Наличие WEB-визуализации:

WEB - наличие WEB-визуализации;

не указывается - нет WEB-визуализации.

На лицевой панели контроллеров в пластмассовом корпусе расположены элементы индикации.

На верхней панели контроллера в пластмассовом корпусе расположены разъемные соединители релейных дискретных выходов 3; 4 и антенный винтовой разъём, для подключения внешней GSM антенны. На нижней панели расположены: разъемные соединители релейных дискретных выходов 1; 2 и интерфейсов связи, слот для подключения карт памяти типа microSD/microSDHC, блок DIP-переключателей, слот для подключения SIM-карты и соединитель порта LAN (интерфейс Ethernet).

Контроллеры в металлическом корпусе выполнены в водо- и пыленепроницаемом исполнении. Все подключения осуществляются внутри герметичного корпуса через гермовводы.

Фотографии внешнего вида контроллеров и преобразователей «IMPulse - RS-485», с указанием схем пломбировки от несанкционированного доступа приведены на рисунках 2 - 4.

Рисунок 2 - Общий вид контроллеров в пластмассовом корпусе

Рисунок 3 - Общий вид контроллеров в металлическом корпусе

Рисунок 4 - Общий вид преобразователей «IMPulse - RS-485»

Программное обеспечение

Программное обеспечение (далее - ПО) состоит из встроенной в корпус средства измерений «Контроллеры многофункциональные сбора и передачи данных КСОД» исполнительной системы конфигурирования EnLogic.

Система EnLogic состоит из модулей:

- 1) Системное программное обеспечение контроллера (далее СПО). СПО обеспечивает все функции реализуемые непосредственно в контроллере опрос узлов учета, хранение архивных данных, передачу информации на верхний уровень. СПО контроллера состоит из операционной системы Linux, исполнительной системы и конфигурации EnLogic по умолчанию.
- 2) WEB-интерфейс контроллера. Является расширением СПО контроллера, и предназначено для мониторинга работы контроллера и основного набора функций конфигурирования WEB-интерфейс доступен при подключении к контроллеру по каналу связи Ethernet, или по статическому адресу через соединение GPRS. Встроенный WEB-интерфейс контроллера позволяет осуществлять мониторинг работы контроллера и конфигурировать параметры списка узлов учета контроллера. Для использования WEB-интерфейса необходим WEB-браузер с поддержкой технологий Jscript и HTML5 (для визуализации данных в виде диаграмм и графиков).
- 3) Утилита опроса контроллера. Выполняет функции, подобные WEB-интерфейсу. Позволяет сохранять результаты мониторинга работы контроллера. Может опрашивать контроллер по IP адресу, а также по GSM-соединению (режим опроса CSD). Одно из предназначений утилиты опроса контроллера проведение пусконаладочных работ по объекту учета, первичная проверка канала связи, формирование отчета по объекту, демонстрация передачи данных в сбытовые организации. Утилита опроса контроллера входит в дистрибутив систем EnLogic и АИИС «ТЕЛЕМЕХАНИКА ЛАЙТ. УЧЕТ». С ее помощью возможно производить опрос контроллера по различным каналам связи, сохранять результаты опроса, корректировать параметры узлов учета, синхронизировать конфигурацию узлов учета в контроллере.

Для функционирования контроллеров необходимо наличие встроенной части ПО. Разделение ПО на метрологически значимую и незначимую части не реализовано. Метрологически значимой является вся встроенная часть ПО.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Наименование программного обеспечения	исполнительная система конфигурирования EnLogic	
Идентификационное наименование ПО	enlogic-drv	
Номер версии (идентификационный номер) ПО	не ниже 4.0.2013	
Цифровой идентификатор программного обеспечения	8df6edc5020e87136b73f8051bfa2ca2	
Алгоритм вычисления цифрового идентификатора программного обеспечения	MD5	

Уровень защиты внутреннего ПО от преднамеренного и непреднамеренного доступа соответствует уровню «высокий» по Р 50.2.077-2014 - данное ПО защищено от преднамеренных изменений с помощью специальных программных средств.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Абсолютная среднесуточная погрешность хода часов, с/сутки	±2
Пределы допускаемой относительной погрешности преобразования (счет количества импульсов) на каждые 10000 импульсов, %	±0,01

Таблица 3 - Основные технические характеристики

1аолица 3 - Основные технические характеристики	_
Наименование характеристики	Значение
Количество цифровых каналов учета, шт.	4096
Количество каналов приема-передачи измерительной	
информации, в зависимости от модификации:	
- по интерфейсу RS-485	до 16
- по интерфейсу RS-232	до 2
- Ethernet 10/100 Мб	до б
- GSM/GPRS модем	до 2
Рабочие условия эксплуатации:	
- температура окружающей среды, °С	от -10 до +50
- относительная влажность воздуха без конденсации, %	до 90
- атмосферное давление, кПа	от 84,0 до 106,7
Напряжение питания переменного тока, В	от 90 до 264
	(номинальное
	110/220)
Частота питающего напряжения, Гц	от 47 до 63
Напряжение питания постоянного тока, В	от 20 до 29
	(номинальное 24)
Масса, кг, не более:	
- пластмассовый корпус	1,0
- металлический корпус	2,0
Габаритные размеры средства измерений, мм, не более:	
пластмассовый корпус	
- высота	129,5
- ширина	34
- длина	157
металлический корпус	
- высота	210
- ширина	47,6
- длина	242
Степень защиты корпуса по ГОСТ 14254-96:	
- пластмассовый корпус	IP20
- металлический корпус	IP54
Средняя наработка на отказ, ч, не менее	100 000
Средний срок службы, лет	12

Знак утверждения типа

наносится на корпус преобразователя при помощи наклейки или другим способом, не ухудшающим качества контроллера, а также на титульный лист (в правом верхнем углу) паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

таолица - комплектноств средства изм	ерении	
Наименование	Обозначение	Количество
Контроллер многофункциональный	КСОД	1 шт.
сбора и передачи данных КСОД		
Преобразователь «IMPulse - RS-485»	IMPulse - RS-485	В
		соответствии
		с заказом

Наименование	Обозначение	Количество
Руководство по эксплуатации	КУВФ.421445.069РЭ	1 экз.
	«Контроллеры	
	многофункциональные сбора и	
	передачи данных КСОД.	
	Руководство по эксплуатации»	
Паспорт	КУВФ.421445.069ПС	1 экз.
Гарантийный талон	-	1 экз.
Компакт-диск с программным	-	1 шт.
обеспечением и документацией		
Кабель программирования	-	1 шт.
Методика поверки	КУВФ.421445.069МП	1 экз ^(*)
	«Контроллеры	
	многофункциональные сбора и	
	передачи данных КСОД.	
	Методика поверки»	

Примечание:

Поверка

осуществляется по документу КУВФ.421445.069МП «Контроллеры многофункциональные сбора и передачи данных КСОД. Методика поверки», утвержденному ФГУП «ВНИИМС» в сентябре 2016 г.

Основные средства поверки:

- устройство синхронизации времени, с пределом допускаемой абсолютной погрешностью привязки фронта выходного импульса 1 Гц к шкале координированного времени UTC при синхронизации времени от встроенного приемника ГЛОНАСС/GPS не менее ±100 мкс (например, устройство синхронизации времени УСВ-3 (рег. № 51644-12), устройство синхронизации времени УСВ-2 (рег. № 41681-09), радиочасы МИР РЧ-01 (рег. № 27008-04), NTP (Network Time Protocol) сервер точного времени сети Интернет));
- генератор импульсов с максимальной амплитудой выходных импульсов 10 В, диапазоном изменения длительности импульсов 10 нс ÷ 1 с (например, генератор импульсов Г5-56 (рег. № 5269-12), генератор сигналов специальной формы ГСС-120 (рег. № 30405-05);
- частотомер электронно-счетный, с диапазоном измерений 0,1 Γ ц-200 М Γ ц и относительной погрешностью не менее $\pm 5 \cdot 10^{-7}$ % (например, частотомер электронный цифровой Ч3-63 (рег. № 46916-11)).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в паспорт и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к контроллерам многофункциональным сбора и передачи данных КСОД

ГОСТ 8.129 - 2013. ГСИ. Государственная поверочная схема для средств измерений времени и частоты.

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

^(*) Поставляется по требованию заказчика.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ТУ26.51.43-001-46526536-2016 Контроллеры многофункциональные сбора и передачи данных КСОД. Технические условия.

Изготовитель

Общество с ограниченной ответственностью «Производственное Объединение ОВЕН» (ООО «ПО ОВЕН»)

ИНН 7722127111

Адрес: 111024, г. Москва, 2-я ул. Энтузиастов, д.5, корп. 5

Тел.: (495) 221-60-64, факс (495) 728-41-45

E-mail: <u>support@owen.ru</u> Web-сайт: <u>www.owen.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

$\alpha \alpha$	Г ~
(' ('	т олубен
U.U.	1 ())1 (()()

М.п. «____»____2016 г.