ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Газпромнефть - ОНПЗ» (актуализация 2016 г.)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Газпромнефть - ОНПЗ» (актуализация 2016 г.) (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее по тексту — ИИК), которые включают в себя трансформаторы тока (далее по тексту — ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее по тексту — ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень — измерительно-вычислительный комплекс электроустановки (далее по тексту — ИВКЭ), включающий в себя устройство сбора и передачи данных СИКОН С10 (далее по тексту — УСПД), УСПД RTU-325, каналообразующую аппаратуру, устройство синхронизации системноговремени (далее по тексту — УССВ) УССВ-2, подключенное к УСПД RTU-325.

3-й уровень – информационно-вычислительный комплекс (далее по тексту – ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее по тексту – БД) АИИС КУЭ, автоматизированные рабочие места персонала (далее по тексту – АРМ), программное обеспечение (далее по тексту – ПО) ПО «Альфа-Центр», АРМ энергосбытовой организации - субъекта оптового рынка, подключенный к БД ИВК АИИС КУЭ ОАО «Газпромнефть - ОНПЗ» при помощи удаленного доступа по сети Internet.

Измерительные каналы (далее по тексту – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД СИКОН С10, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД СИКОН С10 устройствам.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. АРМ энергосбытовой организации - субъекта оптового рынка, подключенный к серверу БД ИВК АИИС КУЭ при помощи удаленного доступа по сети Internet в автоматическом режиме, с использованием ЭЦП, раз в сутки формирует и отправляет по выделенному каналу связи по протоколу TCP/IP отчеты в формате XML в АО «АТС», филиал АО «СО ЕЭС» Омское РДУ и всем заинтересованным субъектам.

Сервер БД и УСПД АИИС КУЭ входят в состав АИИС КУЭ ОАО «Газпромнефть - ОНПЗ» (Рег. № СИ 50229-12).

Синхронизация времени измерительно-вычислительного комплекса электроустановки (далее по тексту – ИВКЭ) в части УСПД СИКОН С10 и ИИК АИИС КУЭ ОАО «Газпромнефть - ОНПЗ» в части ТЭЦ-4 110/35/6 кВ происходит от АИИС КУЭ Омской ТЭЦ-4 Омского филиала ОАО «ТГК-11» (Рег. № СИ 55560-13), а именно от уровня ИВК, включающего в себя сервер БД на базе ИВК «ИКМ-Пирамида» (Рег. № СИ 29484-05), автоматизированные рабочие места.

АИИС КУЭ ОАО «Газпромнефть - ОНПЗ» оснащена УССВ УССВ-2, принимающем сигналы точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УССВ не более ±1 с. УССВ обеспечивает автоматическую коррекцию часов УСПД RTU-325. Коррекция часов УСПД RTU-325 и сервера БД проводится при расхождении часов УСПД и сервера БД и времени приемника более чем на ±1 с. Погрешность часов компонентов АИИС КУЭ не превышает ±5 с. в сутки.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО «Альфа-Центр» версии 15.03, в состав которого входят модули, указанные в таблице 1. ПО «Альфа-Центр» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Альфа-Центр».

Таблица 1 – Метрологические значимые модули ПО

Идентификационные признаки	Значение	
И полужифинализовического получение ПО	ПО «АльфаЦЕНТР»	
Идентификационное наименование ПО	Библиотека ac_metrology.dll	
Номер версии (идентификационный номер) ПО	15.04	
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

ИВК для учета электрической энергии «АльфаЦЕНТР», в состав которых входит ПО «АльфаЦЕНТР», внесены в Федеральный информационный фонд СИ РФ № 44595-10.

Предел допускаемой дополнительной абсолютной погрешности ИВК «АльфаЦЕНТР», получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов ИВК «АльфаЦЕНТР».

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

*			Измерительные комп	поненты			Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	Вид электроэне ргии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
	ТЭЦ-4 110/35/6 кВ							
1	ЗРУ-35 кВ, 2с.ш. 35 кВ, яч. 13, отходящий ф.52Ц	ТПЛ-35 Кл. т. 0,5 1000/5 Зав. № 15; Зав. № 16; Зав. № 17	3HOM-35 Кл. т. 0,5 35000:√3/100:√3 Зав. № 845105; Зав. № 845140; Зав. № 845228	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Зав. № 0811141341	СИКОН С10 Зав. № 370	активная	±1,2 ±2,8	±4,1 ±7,1

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos i = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № от минус 40 до плюс 60 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	8
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	98 до102
- ток, % от I _{ном}	100×до 120
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 5 до 120
- коэффициент мощности cosj	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm емк}$.
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от -40 до +60
- температура окружающей среды в месте расположения	от +10 до +30
УСПД, °С	
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее	165000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1

Продолжение таблицы 3

Наименование характеристики	Значение
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	35
- при отключении питания, лет, не менее	10
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, суток, не менее	35
- сохранение информации при отключении питания, лет, не	
менее	10
Сервер:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).
- Цикличность:
- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Газпромнефть - ОНПЗ» (актуализация 2016г.) типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. № СИ	Количество, шт.
Трансформатор тока	ТПЛ-35	47958-11	3
Трансформатор напряжения	3HOM-35	912-54	3
Счётчик электрической энергии многофункциональный	СЭТ- 4ТМ.03М.01	36697-12	1
Устройство сбора и передачи данных	СИКОН С10	21741-03	1
Устройство сбора и передачи данных	RTU-325	37288-08	1
Программное обеспечение	«Альфа- Центр»	-	1
Методика поверки	МП 206.1-091- 2016	-	1
Паспорт-Формуляр	РЭСС.411711. АИИС.404 ПФ	-	1

Поверка

осуществляется по документу МП 206.1-091-2016 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Газпромнефть - ОНПЗ» (актуализация 2016г.). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в октябре 2016 г.

Основные средства поверки:

- для трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;

- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М.01 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД СИКОН С10 по документу «Контроллеры сетевые индустриальный СИКОН С10. Методика поверки ВЛСТ 180.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в марте 2003 г.;
- УСПД RTU-325 по документу ДЯИМ.466.453.005МП «Устройства сбора и передачи данных RTU-325 и RTU-352L. Методика поверки.», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Федеральном информационном фонде средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ОАО «Газпромнефть - ОНПЗ» (актуализация 2016г.), аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Газпромнефть - ОНПЗ» (актуализация 2016г.)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп») ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Тел.: (4922) 423-162, 222-162, 222-163

Факс: (4922) 423-162 E-mail: post@orem.su

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика» (ООО «Стройэнергетика»)

ИНН 7716809275

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: (915) 349-60-32

E-mail: Stroyenergetika@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Телефон/факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубен

М.п. « » 2016 г.