ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ООО «Транснефть - Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ООО «Транснефть - Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии (мощности), а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень - измерительно-информационный комплекс точки измерений (ИИК), включающий измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), счётчик активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных.

Второй уровень - информационно-вычислительный комплекс (далее ИВК), включающий серверы баз данных (СБД) АИИС КУЭ, серверы приложений, программное обеспечение ПК «Энергосфера» (далее - ПО ПК «Энергосфера»), сервер синхронизации системного времени (ССВ-1Г) и автоматизированные рабочие места (АРМ) операторов, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с первого уровня, ее обработку, хранение и передачу данных результатов измерений в организации-участники оптового и розничного рынка электроэнергии. Совокупность аппаратных, программных и каналообразующих средств ИВК настоящей АИИС КУЭ является единой для всех АИИС КУЭ ОАО «АК «Транснефть», при этом данные всех систем агрегируются в единую базу данных, а отчетные документы оформляются с учетом агрегации.

Принцип действия АИИС КУЭ: первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной и полной мощности без учета коэффициентов трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности. Электрическая энергия, как интеграл по времени от средней мощности, вычисляется для интервалов времени 30 минут.

Цифровой сигнал со счетчика при помощи GSM-модема поступает на ИВК, где выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование, хранение и отображение собранной информации на мониторах АРМ, оформление справочных и отчетных документов.

АИИС КУЭ осуществляет обмен данными с АИИС КУЭ смежных субъектов по каналам связи в формате xml-файлов. Передача результатов измерений, информации о состоянии

объекта и средств измерений по группам точек поставки производится с сервера ИВК АИИС КУЭ ОАО «АК «Транснефть» (Госреестр № 54083-13) с учетом полученных данных по точке измерений, входящей в настоящую систему и АИИС КУЭ смежных субъектов. Передача полученной информации в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ), розничного рынка электроэнергии (РРЭ), в АО «АТС» и АО «СО ЕЭС» осуществляется с ИВК через каналы связи в виде хml-файлов форматов, установленных в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности, с использованием электронной цифровой подписи (ЭЦП) субъекта ОРЭМ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), которая обеспечивает поддержание единого календарного времени на уровнях ИВК и ИИК. Задача синхронизации времени АИИС КУЭ со шкалой единого координированного времени UTC решается с помощью приема сигналов глобальной навигационной спутниковой системы ГЛОНАСС либо глобальной системы позиционирования GPS.

Синхронизация времени АИИС КУЭ обеспечивается сервером синхронизации времени ССВ-1Г (Госреестр № 39485-08). Часы СБД синхронизируются по сигналам от ССВ-1Г, которые корректируются от ГЛОНАСС либо GPS. Сличение часов СБД с часами счетчиков электроэнергии осуществляется при каждом сеансе связи, коррекция часов счетчиков проводится при расхождении более ± 1 с, но не чаще одного раза в сутки.

Журнал событий счетчика электроэнергии отражает время до и после коррекции часов (в формате дата, часы, минуты, секунды).

Погрешность СОЕВ АИИС КУЭ не превышает ±5,0 с/сут.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПК «Энергосфера» версии не ниже 7.1.

Состав и идентификационные данные ПО АИИС КУЭ приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
Номер версии (идентификационный номер) ПО	не ниже 7.1
Hydronov vygovendovygomon IIO	CBEB6F6CA69318BED976E08A2BB7814B
Цифровой идентификатор ПО	(по MD5)
Наименование программного модуля ПО	pso_metr.dll

ПО ПК «Энергосфера» обеспечивает защиту полученной измерительной информации от несанкционированного доступа и изменения путём многоуровневой системы паролей в соответствии с правами доступа.

Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами $\Pi O \ \Pi K$ «Энергосфера».

Уровень защиты ПО АИИС КУЭ от непреднамеренных и преднамеренных изменений - высокий (по Р 50.2.077-2014).

Метрологические характеристики ИК АИИС КУЭ, приведенные в таблице 2, нормированы с учетом ПО.

Метрологические и технические характеристики

Состав информационно-измерительного комплекса (ИИК) измерительного канала (ИК) АИИС КУЭ, представлены в таблице 2.

Таблица 2 - Состав информационно-измерительного комплекса (ИИК) измерительного канала (ИК) АИИС КУЭ

Номер	Наименование	V	Вид измеряемой		
ИК	присоединения	TT	TH	Счетчик	электрической энергии (мощности)
1	ВЛ-10 кВ, ф.123-07 от ПС 35/10 кВ №123 "Пинчуга" (ПКУЭ-10 кВ на опоре №216)	ТЛО-10 Кл.т. 0,5S К _{ТТ} =30/5 Госреестр № 25433-11	ЗНОЛП-ЭК-10 Кл.т. 0,5 Ктн=10000:√3/100:√3 Госреестр № 47583-11	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Госреестр № 36697-12	активная, реактивная

Примечания:

- 1 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в таблице 2.
- 2 Замена оформляется актом в установленном в ООО «Транснефть Восток» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3а - Пределы допускаемой основной относительной погрешности ИК при измерении электроэнергии в нормальных условиях применения АИИС КУЭ при доверительной вероятности p=0,95

	Активная электроэнергия W_P и ее приращение за 30 мин.										
	и усредненная за 30 мин. активная мощность P										
Номер	Класс точности		2	$\pm \delta_{P \mid_{2\%},\ \%}$	±δ _{Р I_{5%} , %}	±δ _{P I_{20%} , %}	±δ _{P I_{100%} , %}				
ИК			Знач	для диапазона	для диапазона	для диапазона	для диапазона				
	TT	TH	Сч.	cosj	${f I_{2\%}}$ £ $I<{f I_{5\%}}$	I _{5%} £ $I < I_{20\%}$	$\mathbf{I}_{20\%}~\mathfrak{L}_{I<\mathbf{I}_{HOM=\mathbf{100\%}}}$	I _{100%} £/£			
	0,5S			1	1,8	1,1	0,9	0,9			
1		0.5	0.25	0,9	2,3	1,3	1,0	1,0			
1		0,3	0,23	0,23	0,23	0,8	2,9	1,7	1,2	1,2	
				0,5	5,4	3,0	2,2	2,2			
_	Реактивная электроэнергия W_Q и ее приращение за 30 мин.										
	v vanavvavvag aa 20 vavv naavmvavag vavvvaamv										

	**	и усредненная за 30 мин. реактивная мощность Q							
Номер ИК		Класс		сс знач.		$\pm\delta_{Q\; \mathrm{I}_{296}\;,\;\%}$ $\pm\delta_{Q\; \mathrm{I}_{596}\;,\;\%}$		±∂ _{Q I_{20%} , %}	±001100%, %
	YIIX	точности		cosj /	для диапазона	для диапазона	для диапазона	для диапазона	
		TT	TH	Сч.	sinj	$I_{2\%}$ £ $I < I_{5\%}$	I _{5%} £ <i>I</i> < I _{20%}	$I_{20\%}$ £ $I < I_{100\%}$	I _{100%} £ <i>I</i> £ I _{120%}
					0,9/0,44	6,5	3,5	2,6	2,5
1		0,5S	0,5	0,5	0,8/0,60	4,3	2,4	1,8	1,8
					0,5/0,87	2,5	1,5	$1,\overline{2}$	1,2

Примечания:

- 1 Нормальные условия:
- температура окружающего воздуха:
 - для измерительных трансформаторов по ГОСТ 7746-2001и ГОСТ 1983-2001,
 - для счетчиков (23±2) °C,
 - для ИВК и ССВ-1Г (20±2) °С;
- диапазон напряжения (0,98-1,02)*Uном*;
- частота (50±0,5) Гц;
- магнитная индукция внешнего происхождения не более 0,05 мТл.

Таблица 36 - Пределы допускаемой относительной погрешности ИК при измерении электроэнергии в рабочих условиях применения АИИС КУЭ при доверительной вероятности p=0.95

	Активная электроэнергия W_P и ее приращение за 30 мин.											
Номер ИК	и усредненная за 30 мин. активная мощность P											
	Класс			Знач	±δρι _{2%} ,%	±δρ _{Ιςω} , %	±δ _{P I20%} , %	±δ _{P I_{100%} , %}				
	точности		_	для диапазона	для диапазона	для диапазона	для диапазона					
	TT	TH	Сч.	cosj	$\mathbf{I}_{2\%}$ £ $I < \mathbf{I}_{5\%}$	$\mathbf{I_{5\%}}$ £ $I < \mathbf{I_{20\%}}$	$\mathbf{I_{20\%}}$ £ $_{I < I_{\mathtt{HOM} = 100\%}}$	I 100% £ <i>I</i> £				
1	0,5S	C 0.5	0,2S	1	1,9	1,2	1,0	1,0				
				0,28	0.25	0.25	0.25	0.25	0,9	2,4	1,4	1,2
		0,5			0,8	2,9	1,8	1,4	1,4			
				0,5	5,5	3,0	2,3	2,3				

		Реактивная электроэнергия W_Q и ее приращение за 30 мин. и усредненная за 30 мин. реактивная мощность Q									
Номер ИК	Класс			Знач.	±ô _Q ₁ _{2%, %}	±0°Q 15% , %	± <i>8₀</i> ₁₂∞, %	±ბე _{1100%} , %			
1110	точности		cosj /	для диапазона	для диапазона	для диапазона	для диапазона				
	TT	ТН	Сч.	sinj	$\mathbf{I}_{2\%}$ £ $I < \mathbf{I}_{5\%}$	I _{5%} £ I < I _{20%}	$\mathbf{I_{20\%}}$ £ $I < \mathbf{I_{100\%}}$	I _{108%} £ <i>I</i> £ I _{126%}			
				0,9/0,44	6,6	3,7	2,9	2,8			
1	0,5S	0,5	0,5	0,8/0,60	4,5	2,7	2,2	2,2			
				0,5/0,87	2,9	2,1	2,0	2,0			

Примечания:

1 Рабочие условия:

- допускаемая температура окружающего воздуха:
 - для измерительных трансформаторов от минус 60 до +40 °C,
 - для счетчиков СЭТ-4TM.03M от минус 40 до +60 °C,
 - для ИВК (20±10) °C,
 - для сервера синхронизации времени ССВ-1Г от +5 до +40 °С;
- диапазон напряжения (0,9-1,1)*Uном*;
- частота (50±1,5) Гц.
- 2 Погрешность в рабочих условиях указана для колебаний температуры окружающего воздуха в месте расположения счетчиков электроэнергии в процессе выполнения измерений от +5 до +35 °C.
 - 3 В таблицах За и 36 приняты следующие обозначения:

 $W_{P2\%}$ ($W_{Q2\%}$) - значение электроэнергии при 2 %-ной нагрузке (минимальная нагрузка);

 $W_{P5\%}$ ($W_{O5\%}$) - значение электроэнергии при 5 %-ной нагрузке;

 $W_{P20\,\%}$ ($W_{Q20\%}$) - значение электроэнергии при 20 %-ной нагрузке;

 $W_{P100\%}$ ($W_{O100\%}$) - значение электроэнергии при 100 %-ной нагрузке (номинальная нагрузка);

 $W_{P120\%}$ ($W_{O120\%}$) - значение электроэнергии при 120 %-ной нагрузке (максимальная нагрузка).

Параметры надежности применяемых в АИИС КУЭ компонентов:

- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ T не менее 165000 ч, среднее время восстановления работоспособности t_{θ} не более 2 ч;
- сервер синхронизации времени ССВ- 1Γ среднее время наработки на отказ T не менее 15000 ч, среднее время восстановления работоспособности $t_{\it B}$ не более 2 ч;
 - серверы баз данных:
 - HP ProLiant BL 460c Gen8 среднее время наработки на отказ T не менее 261163 ч, среднее время восстановления работоспособности $t_{\mathcal{B}}$ не более 0,5 ч;
 - HP ProLiant BL 460с G6 среднее время наработки на отказ T не менее 264599 ч, среднее время восстановления работоспособности $t_{\it B}$ не более 0,5 ч.
 - Защищенность применяемых в АИИС КУЭ компонентов:
 - наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - наличие защиты на программном уровне:
 - двухуровневый пароль на счетчике;
 - пароли на сервере, предусматривающие разграничение прав доступа к измерительной информации для различных групп пользователей.

В журналах событий счетчиков фиксируются факты:

- попытки несанкционированного доступа;
- связи со счетчиком, приведшие к изменениям информации;
- изменения текущего значения времени и даты при синхронизации времени;

- отсутствия напряжения при наличии тока в измерительных цепях;
- перерыва питания.

Глубина хранения информации (профиля):

- электросчетчики СЭТ-4ТМ.03М имеют энергонезависимую память для хранения трех независимых профилей нагрузки с получасовым интервалом данных с нарастающим итогом за прошедший месяц по 4-м каналам (активная и реактивная электроэнергия прямого и обратного направления), а также запрограммированных параметров (функция автоматизирована) на глубину 114 суток (3,7 месяца);
- серверы баз данных хранение результатов измерений, информации о состоянии средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на Систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ООО «Транснефть - Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений. Комплектность АИИС КУЭ приведена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование (обозначение) изделия	Количество (шт.)
Измерительные трансформаторы тока ТЛО-10	3
Измерительные трансформаторы напряжения ЗНОЛП-ЭК-10	3
Счетчик электрической энергии СЭТ-4ТМ.03М	1
Сервер синхронизации времени ССВ-1Г	1
Сервер баз данных и приложений с ПО ПК «Энергосфера»	2
Методика поверки	1
Формуляр	1
Руководство по эксплуатации	1

Поверка

осуществляется по документу МП 002-2016 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ООО «Транснефть - Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара». Методика поверки», утвержденному Восточно-Сибирским филиалом ФГУП «ВНИИФТРИ» в сентябре 2016 г.

Основные средства поверки:

- измерительных трансформаторов тока по ГОСТ 8.217-2003;
- измерительных трансформаторов напряжения по ГОСТ 8.216-2011;
- счетчика электрической энергии в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ФБУ «Нижегородский ЦСМ» в мае 2012 г.;
- ntp-сервер сигналов времени, входящий в состав эталона времени и частоты Φ ГУП «ВНИИ Φ ТРИ» (или радиочасы МИР РЧ-02.00 при отсутствии Интернета на месте поверки).

- переносной инженерный пульт - ноутбук с ПО «Конфигуратор СЭТ-4ТМ» для конфигурации и опроса счетчика и с оптическим преобразователем для работы со счетчиком АИИС КУЭ.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде оттиска клейма поверителя и (или) наклейки со штрих-кодом.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика (методы) измерений электрической энергии и мощности на присоединении ПАО «Транснефть» в части ООО «Транснефть - Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара», аттестована ФГУП «ВНИИФТРИ» (аттестат об аккредитации № RA.RU.311243 от 13.10.2015г.).

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части ООО «Транснефть - Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Изготовитель

ООО «Транснефть - Восток»

ИНН 3801079671

Адрес: 665734, Россия, Иркутская область, г. Братск, ж.р. Энергетик, ул. Олимпийская, 14

Телефон: +7 (3953) 300-774, +7 (3953) 300-639

Факс: +7 (3953) 300-703, +7 (3953) 300-704, +7 (3953) 300-705

Эл. почта: <u>vsmn@vsmn.transneft.ru</u>

Испытательный центр

Восточно-Сибирский филиал Φ ГУП «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Восточно-Сибирский филиал Φ ГУП «ВНИИ Φ ТРИ»)

Юридический адрес: 141570, Московская область, Солнечногорский район, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Адрес: 664056, г. Иркутск, ул. Бородина, 57

Тел./факс: +7 (3952)46-83-03/+7 (3952)46-38-48; E-mail: office@niiftri.irk.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель				
Руководителя Федерального				
агентства по техническому				
регулированию и метрологии				С.С. Голубев
	M -			2016 -
	Мπ	"	<i>''</i>	2016 г