ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ Эльтон

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ Эльтон (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Полученные данные и результаты измерений могут использоваться для оперативного управления энергопотреблением на ΠC 110 кВ Эльтон ΠAO «ФСК ЕЭС».

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (далее по тексту - ТТ), измерительные трансформаторы напряжения (далее по тексту - ТН), счетчики активной и реактивной электроэнергии (далее по тексту - Счетчики), вторичные измерительные цепи и технические средства приема-передачи данных, включающие шлюзы Е-422, сетевые концентраторы, каналы связи для обеспечения информационного взаимодействия между уровнями системы;

Второй уровень - информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журнал событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера Центра сбора и обработки данных (далее по тексту ЦСОД) ПАО «ФСК ЕЭС» не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ).

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени; автоматизированные рабочие места (APM) на базе персонального компьютера (далее по тексту - ПК); каналообразующую аппаратуру; средства связи и передачи данных.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным линиям связи поступают на выходы счетчика электроэнергии, где производится измерение мгновенных и средних значений активной и реактивной мощности. На основании средних значений мощности измеряются приращения электроэнергии за интервал времени 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на ИВК Центра сбора данных АИИС КУЭ.

Коммуникационный сервер опроса ИВК АИИС КУЭ единой национальной (общероссийской) электрической сети (далее по тексту - ЕНЭС) «Метроскоп» автоматически опрашивает счетчики с помощью выделенного канала (основной канал связи).

По окончании опроса коммуникационный сервер автоматически производит обработку измерительной информации (умножение на коэффициенты трансформации) и передает

полученные данные в базу данных (БД) сервера ИВК АИИС КУЭ ЕНЭС «Метроскоп». В сервере БД ИВК АИИС КУЭ ЕНЭС «Метроскоп» информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске. Между центром сбора и обработки данных (далее по тексту - ЦСОД) ПАО «ФСК ЕЭС» и ЦСОД филиала ПАО «ФСК ЕЭС» - МЭС Центра происходит автоматическая репликация данных по сетям единой цифровой сети связи электроэнергетики (ЕЦССЭ).

Один раз в сутки коммуникационный сервер ИВК АИИС КУЭ ЕНЭС «Метроскоп» автоматизированно формирует файл отчета с результатами измерений, в формате XML, и автоматизированно передает его в программно-аппаратный комплекс (ПАК) ОАО «АТС» и в ОАО «СО ЕЭС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ). Устройство синхронизации системного времени обеспечивает автоматическую синхронизацию часов сервера, при превышении порога ± 1 с происходит коррекция часов сервера. Сличение часов счетчиков и ИВК происходит при каждом сеансе связи. Коррекция проводится при расхождении часов счетчиков и сервера на значение, превышающее ± 2 с.

Погрешность измерения системного времени АИИС КУЭ не превышает ±5 с/сут.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии ЕНЭС «Метроскоп» (далее по тексту - СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп»). СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп», установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
1	2
1	<u>Z</u>
Идентификационное наименование ПО	СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп»
Номер версии	1.00
(идентификационный номер) ПО	1.00
Цифровой идентификатор ПО	D233ED6393702747769A45DE8E67B57E

СПО ИВК АИИС КУЭ ЕНЭС «Метроскоп» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014.

Метрологические и технические характеристики Состав 1-го уровня ИК АИИС КУЭ приведен в таблице 2. Метрологические характеристики АИИС КУЭ приведены в таблице 3.

Таблица 2 - Состав 1-го ИК АИИС КУЭ

No	Диспетчерское Состав 1-го уровня ИК				
ИК	наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	
1	2	3	4	5	
1	В-110-Т1 (ВЛ-110 кВ 244)	ТРГ-110 II* кл.т 0,2S Ктт = 100/5 Зав. № 6440; 6441; 6442 Госреестр № 26813-06	ЗНОГ-110 У1 кл.т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 556; 560; 561 Госреестр № 23894-12	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 571826 Госреестр № 25971-06	
2	В-110-Т2 (ВЛ-110 кВ 244)	ТРГ-110 II* кл.т 0,2S Ктт = 100/5 Зав. № 6445; 6444; 6443 Госреестр № 26813-06	ЗНОГ-110 У1 кл.т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 559; 557; 558 Госреестр № 23894-12	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 571827 Госреестр № 25971-06	
3	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 1 СШ 10 кВ, яч.3, 3Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 150/5 Зав. № 15-14656; 15-14657; 15-14658 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1732 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 452266 Госреестр № 25971-06	
4	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 1 СШ 10 кВ, яч.5, 5Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 150/5 Зав. № 15-14659; 15-14660; 15-14661 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1732 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 571776 Госреестр № 25971-06	

Продолжение таблицы 2

	1родолжение таблицы 2					
1	2	3	4	5		
5	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 1 СШ 10 кВ, яч.7, 7Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 50/5 Зав. № 15-14643; 15-14638; 15-14639 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1732 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 452257 Госреестр № 25971-06		
6	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 2 СШ 10 кВ, яч.8, 8Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 50/5 Зав. № 15-14632; 15-14633; 15-14634 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1703 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 452245 Госреестр № 25971-06		
7	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 2 СШ 10 кВ, яч.10, 10Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 75/5 Зав. № 15-14653; 15-14654; 15-14655 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1703 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 452270 Госреестр № 25971-06		
8	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 2 СШ 10 кВ, яч.12, 12Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 50/5 Зав. № 15-14640; 15-14641; 15-14642 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1703 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 452271 Госреестр № 25971-06		
9	ПС 110/35/10 кВ "Эльтон", КРУН-10 кВ, 2 СШ 10 кВ, яч.14, 14Л-Эльтон-10	ТЛО-10 кл.т 0,5S Ктт = 50/5 Зав. № 15-14644; 15-14645; 15-14646 Госреестр № 25433-11	НАМИ-10У2 кл.т 0,2 Ктн = 10000/100 Зав. № 1703 Госреестр № 11094-87	EPQS111.21.18.LL кл.т 0,2S/0,5 Зав. № 577790 Госреестр № 25971-06		

Таблица 3 - Метрологические характеристики

Номер ИК	cosφ	Границы интервала допускаемой относительной погрешности ИК при измерении активной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ (d), %, при доверительной вероятности, равной 0,95			
		d _{1(2)%} ,	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,
		$I_{1(2)\%}$ £ $I_{u3M} < I_{5\%}$			
1	2	3	4	5	6
	1,0	±1,2	±0,8	±0,8	±0,8
1, 2	0,9	±1,2	±0,9	±0,8	±0,8
(Счетчик 0,2S;	0,8	±1,3	±1,0	±0,9	±0,9
TT 0,2S; TH 0,2)	0,7	±1,5	±1,1	±0,9	±0,9
	0,5	±1,9	±1,4	±1,2	±1,2
	1,0	±1,8	±1,1	±0,9	±0,9
3 - 9	0,9	±2,1	±1,3	±1,0	±1,0
(Счетчик 0,2S;	0,8	±2,5	±1,6	±1,2	±1,2
TT 0,5S; TH 0,2)	0,7	±3,1	±1,9	±1,4	±1,4
	0,5	±4,7	±2,8	±2,0	±2,0
Номер ИК	cosφ	Границы интервала допускаемой относительной погрешности ИК при измерении реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ (d), %, при доверительной вероятности, равной 0,95			
		d _{1(2)%} ,	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,
		I _{1(2)%} £ I _{изм} < I _{5 %}	I _{5 %} £I _{изм} <i <sub="">20 %</i>	I _{20 %} £I _{изм} <i<sub>100%</i<sub>	I_{100} %£ $I_{изм}$ £ $I_{120\%}$
	0,9	±2,7	±2,2	±1,9	±1,9
1, 2 (Счетчик 0,5;	0,8	±2,3	±2,0	±1,7	±1,7
ТТ 0,2S; ТН 0,2)	0,7	±2,1	±1,9	±1,6	±1,6
· · · · · · · · · · · · · · · · · · ·	0,5	±1,9	±1,8	±1,5	±1,5
	0,9	±5,7	±3,6	±2,7	±2,7
3 - 9 (Счетчик 0,5;	0,8	±4,1	±2,8	±2,1	±2,1
ТТ 0,5S; ТН 0,2)	0,7	±3,4	±2,4	±1,9	±1,9
, , , -, ,	0,5	±2,7	±2,1	±1,6	±1,6

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для cosj =1,0 нормируется от $I_{1\%}$, погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для cosj <1,0 нормируется от $I_{2\%}$.
- 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой).
 - 3 Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения от 0,99·Uн до 1,01·Uн;
- диапазон силы тока от 0,01· Iн до 1,2·Iн;
- температура окружающего воздуха: ТТ и TH от минус 40 до 50 °C; счетчиков от 18 до 25 °C; ИВК от 10 до 30 °C;
 - частота (50±0,15) Гц.

4 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от 0,9·Uн1 до 1,1·Uн1; диапазон силы первичного тока от 0,01·Iн1 до 1,2·Iн1;
 - частота (50±0,4) Гц;
 - температура окружающего воздуха от минус 40 до 50 °C.

Для счетчиков электроэнергии:

- параметры сети: диапазон вторичного напряжения от $0.8 \cdot \text{U} + 2$ до $1.15 \cdot \text{U} + 2$; диапазон силы вторичного тока от $0.01 \cdot \text{I} + 2$ до $2 \cdot \text{I} + 2$;
 - частота (50±0,4) Гц;
 - температура окружающего воздуха от 10 до 30 °C.
- 5 Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2.
- 6 Виды измеряемой электроэнергии для всех ИК, перечисленных в таблице 2 активная, реактивная.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчики электроэнергии EPQS среднее время наработки на отказ не менее 70000 часов, среднее время восстановления работоспособности 48 часов;

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчиков фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция шкалы времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчиков электроэнергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки.
- наличие защиты на программном уровне:
 - пароль на счетчиках электроэнергии;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции шкалы времени в:

- счетчиках электроэнергии (функция автоматизирована).

Глубина хранения информации:

- электросчетчики тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 3,5 лет.

Знак утверждения типа

наносится на титульный лист Паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Таблица 4 - Комплектность средства измерений

Наименование	Тип	Кол-во,
Паимснование	1 1111	шт.
1	2	3
Трансформатор тока	ТРГ-110 Ⅱ*	6
Трансформатор тока	ТЛО-10	21
Трансформатор напряжения	3НОГ-110 У1	6
Трансформатор напряжения	НАМИ-10У2	2
Счетчик электрической энергии	EPQS111.21.18.LL	9
многофункциональный	EI Q5111.21.16.EL	9
Методика поверки	РТ-МП-3972-500-2016	1
Паспорт - формуляр	АУВП.411711.ФСК.045.27ПФ	1

Поверка

осуществляется по документу РТ-МП-3972-500-2016 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ Эльтон. Методика поверки», утвержденному ФБУ «Ростест-Москва» 07.10.2016 г.

Основные средства поверки:

- для трансформаторов тока по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- для счетчиков электроэнергии EPQS по документу «Счетчики электрической энергии многофункциональные EPQS. Методика поверки PM 1039597-26:2002»;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- средства измерений для проверки нагрузки на вторичные цепи TT и TH и падения напряжения в линии связи между вторичной обмоткой TH и счетчиком по МИ 3000-2006.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

Знак поверки, в виде оттиска поверительного клейма и (или) наклейки, наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе: «Методика измерений количества электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ Эльтон».

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ Эльтон

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Центр энергоэффективности ИНТЕР РАО ЕЭС» (ООО «Центр энергоэффективности ИНТЕР РАО ЕЭС»)

ИНН 7704765961

Юридический адрес: 119435, г. Москва, ул. Большая Пироговская, д.27, стр.1

Тел.: +7 (495) 221-75-60

Заявитель

Филиал Общества с ограниченной ответственностью Управляющая компания «РусЭнергоМир» в г. Москве (Филиал ООО УК «РусЭнергоМир» в г. Москве)

Юридический адрес: 123557, г. Москва, ул. Пресненский вал, д. 14, 3 этаж

Тел.: +7 (499) 750-04-06

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Тел.: +7 (495) 544-00-00

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310639 от 16.04.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2016 г.