ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала АО «Концерн Росэнергоатом» «Курская атомная станция»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала АО «Концерн Росэнергоатом» «Курская атомная станция» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, а также для автоматизированного сбора, обработки, хранения, отображения данных, формирования отчетных документов и передачи информации в АО «АТС», АО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную многоуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии, а также нарастающим итогом на начало расчетного периода, используемое для формирования данных коммерческого учета;
- периодический (1 раз в 30 минут) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин) и данных о состоянии средств измерений;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации и от несанкционированного доступа и данных о состоянии средств измерений;
- передача результатов измерений в XML-формате по электронной почте коммерческому опера-тору (KO) и внешним организациям с электронной подписью;
- обеспечение по запросу КО дистанционного доступа к результатам измерений, данным о состоянии средств измерений с сервера (APMa) ИВК АИИС КУЭ на всех уровнях АИИС КУЭ;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика функционирования технических и программных средств АИИС КУЭ;
- формирование данных о состоянии средств измерений («Журналы событий»);
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие измерительные трансформаторы тока (ТТ) класса точности (КТ) 0,2S, 0,2, 0,5 по ГОСТ 7746-01, измерительные трансформаторы напряжения (ТН) класса точности (КТ) 0,2 и 0,5 по ГОСТ 1983-01, счетчики электрической энергии трехфазные многофункциональные Альфа A1800 (модификации A1802RAL-P4G-DW-4, A1802RAL-P4GB-DW-4) класса точности (КТ) 0,2S/0,5 (ГР № 31857-11) по ГОСТ 31819.22-2012 при измерении активной электрической энергии и по ГОСТ 31819.23-2012 при измерении реактивной электрической энергии, указанных в таблице 2 (21 точка измерения), вторичные измерительные цепи и технические средства приема-передачи данных. В виду отсутствия в ГОСТ 31819.23-2012 класса точности (КТ) 0,5 пределы погрешностей при измерении реактивной энергии не

превышают значений аналогичных погрешностей для счетчиков класса точности (КТ) 0,5S по ГОСТ 31819.22-2012.

2-й уровень - измерительно-вычислительный комплекс электроустановки ИВКЭ, включающий в себя сервер сбора, обработки и хранения данных Курской атомной станции (далее - сервер станции) с установленным серверным программным обеспечением программного комплекса (ПК) "АльфаЦЕНТР", устройство синхронизации времени (УСВ) выполненного на базе GPS-приемника типа УССВ-16НVS (основное устройство), NTP-сервер точного времени типа LANTIME M300/GPS (резервное устройство) и тайм-серверы , входящие в состав эталонов времени и частоты ФГУП «ВНИИФТРИ (резервное устройство), автоматизированные рабочие места операторов АИИС КУЭ, технические средства приемапередачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, а также совокупность аппаратных, каналообразующих, выполняющих сбор информации с нижнего уровня, ее обработку и хранение, передачу на верхний уровень.

3-й уровень- представляет собой информационно-вычислительный комплекс (ИВК), включающий в себя сервер сбора, обработки и хранения данных АО «Концерн Росэнергоатом» (далее по тексту- сервер АО «Концерн Росэнергоатом») с установленным серверным программным обеспечением (ПК) «АльфаЦЕНТР», устройство синхронизации времени (УСВ), выполненного на базе GPS-приемника типа УССВ-16HVS (основное устройство), тайм-серверы , входящие в состав эталонов времени и частоты ФГУП «ВНИИФТРИ (резервное устройство), автоматизированные рабочие места операторов АИИС КУЭ, технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным цепям поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Сервер станции автоматически в заданные интервалы времени (30 мин.) производит считывание из счетчиков данных коммерческого учета электроэнергии и записей журнала событий. Сервер станции производит приведение результатов измерений к реальным значениям с учетом коэффициентов трансформации трансформаторов тока и трансформаторов напряжения. После поступления в сервер станции считанной информации данные обрабатываются и записываются в энергонезависимую память (заносятся в базу данных).

Сервер АО «Концерн Росэнергоатом» автоматически в заданные интервалы времени (30 мин) производит считывание из сервера станции данных коммерческого учета электроэнергии и записей журнала событий. Считанные данные подвергаются дальнейшей обработке и записываются в энергонезависимую память сервера АО «Концерн Росэнергоатом» (заносятся в базу данных).

Обмен информацией счетчиков и сервера станции происходит по проводным и оптическим линиям ЛВС Курской атомной станции с использованием протоколов RS-485 и Ethernet. Обмен информацией между сервером станции и сервером АО «Концерн Росэнергоатом» происходит по корпоративной сети передачи данных АО «Концерн Росэнергоатом» с использованием протокола Ethernet. При выходе из строя линий связи АИИС КУЭ считывание данных из счетчиков производится в автономном режиме с использованием инженерного пульта (ноутбука) через встроенный оптический порт счетчиков.

Передача информации в АО «АТС», АО «СО ЕЭС» и прочим заинтересованным организациям в рамках регламента ОРЭМ осуществляется с уровня ИВК по электронной почте с помощью сети Internet в виде файла формата ХМL. Результаты измерений электроэнергии (W, кВт·ч, Q, квар·ч) передаются в целых числах. При необходимости файл подписывается электронной цифровой подписью.

Информационные каналы связи в АИИС КУЭ для передачи данных построены:

- от ИИК точек измерения (ТИ) в ИВКЭ предприятия посредством двухпроводной линии («витая пара»), и далее, через преобразователь по оптоволоконным линиям,
- -от ИВКЭ предприятия в ИВК АО «Концерн Росэнергоатом» посредством локальной сети Ethernet,
- от ИВК АО «Концерн Росэнергоатом» во внешние системы посредством глобальной сети Internet.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с единым календарным временем. Единое календарное время в АИИС КУЭ обеспечивается системой обеспечения единого времени (СОЕВ). Система обеспечения единого времени включает в себя GPS-приемник типа УССВ-16HVS, (далее-УСВ), принимающий сигналы точного времени от спутников глобальный системы позиционирования GPS или ГЛОНАСС. СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую синхронизацию времени.

Сравнение системного времени сервера станции и УСВ происходит по сигналам УСВ, подключенного к серверу станции, не реже одного раза в час, при этом коррекция времени проводится при расхождении показаний часов сервера станции и УСВ на величину более чем ± 1 с. Сравнение показаний часов счетчиков и сервера станции происходит при каждом обращении к счетчику, но не реже одного раза в 30 минут, синхронизация осуществляется при расхождении показаний часов счетчика и сервера станции на величину более чем ± 2 с.

Сравнение системного времени сервера AO «Концерн Росэнергоатом» и УСВ происходит по сигналам УСВ, подключенного к серверу AO «Концерн Росэнергоатом», не реже одного раза в час, при этом коррекция времени проводится при расхождении показаний часов сервера AO «Концерн Росэнергоатом» и УСВ на величину более чем ± 1 с.

В качестве резервных источников синхронизации времени сервера станции используются: NTP-сервер точного времени типа LANTIME M300/GPS. В этом случае коррекция системного времени сервера станции производится не реже одного раза в час по сигналам от резервного источника синхронизации времени, подключенного к серверу станции, при расхождении показаний часов сервера станции и резервного источника синхронизации времени на величину более чем ± 1 с и тайм-серверы , входящие в состав эталонов времени и частоты Φ ГУП «ВНИИ Φ ТРИ», позволяющих получать шкалу точного времени по протоколу NTP с погрешностью передачи сигналов ± 10 мс. В этом случае коррекция системного времени сервера станции производится не реже одного раза в час при расхождении показаний часов сервера станции и резервного источника синхронизации времени на величину более чем ± 1 с.

В качестве резервного источника синхронизации времени АО «Концерн Росэнергоатом» используются сигналы точного времени от Государственного первичного эталона времени и частоты с использованием группы тайм-серверов ФГУП «ВНИИФТРИ», входящих в комплекс технических средств эталона и позволяющих получать шкалу точного времени по протоколу NTP с погрешностью передачи сигналов ± 10 мс. В этом случае коррекция системного времени сервера ИВК производится не реже одного раза в час при расхождении показаний часов сервера ИВК и резервного источника синхронизации времени на величину более чем ± 1 с.

Предел допускаемой абсолютной погрешности хода часов АИИС КУЭ ±5 с/сутки

Факты коррекции шкал времени часов компонентов АИИС КУЭ регистрируются в журналах событий счетчиков, сервера станции и сервера ИВК.

Программное обеспечение

В состав программного обеспечения (ПО) АИИС КУЭ входит: ПО счетчиков электроэнергии, ПО серверов АИИС КУЭ, ПО СОЕВ. Программные средства серверов АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО - программный комплекс (ПК) «АльфаЦЕНТР» (свидетельство о метрологической аттестации от 31.05.2012 № АПО-001-12, выдано ФГУП «ВНИИМС»).

Идентификационные данные ПО - программный комплекс (ПК) «АльфаЦЕНТР» приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО (ПК) «АльфаЦЕНТР»

Идентификационные данные (признаки)	Значение
Наименование ПО	ПК «АльфаЦЕНТР»
Идентификационное наименование ПО	ac_metrology.dll
Номер версии (идентификационный номер) ПО	12.01
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора программного обеспечения	MD5

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений по P 50.2.077-2014 - средний.

Конструкция АИИС КУЭ исключает возможность несанкционированного влияния на ПО АИИС КУЭ и измерительную информацию (наличие специальных средств защитыразграничение прав доступа, использование ключевого носителя, пароли, фиксация изменений в журнале событий), исключающие возможность несанкционированной модификации, загрузки фальсифицированного ПО и данных, считывания из памяти, удаления или иных преднамеренных изменений метрологически значимой части ПО и измеренных данных.

Метрологические и технические характеристики

должны соответствовать положениям постановления Правительства РФ от 31.10.2009 г. №879 «Об утверждении положения о единицах величин, допускаемых к применению в Российской Федерации», ГОСТ 8.009-84, РМГ 29-2013, а также действующим национальным стандартам на средства измерений.

Перечень компонентов АИИС КУЭ, с указанием непосредственно измеряемой величины, наименования присоединений, типов и классов точности средств измерений, входящих в состав измерительного канала (далее-ИК) представлен в таблице 2.

Таблица 2 - Перечень компонентов, входящих в измерительные каналы АИИС КУЭ

	1	Состав измерительные каналы Аййс Ку Э								
Номер ИК	Наименование присоединения	Трансфор- матор тока	Трансфор- матор напряжения	Счетчик	ИВКЭ	УСВ уровня ИВКЭ	иВК	уСВ уровня ИВК	Вид электро-	
1	2	3	4	5	6	7	8	9	10	
1	ТГ-1	ТШЛ20Б-III КТ 0,5 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5), тайм-				
2	ТΓ-2	ТШЛ20Б-III КТ 0,5 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		ервный			ФГУП	
3	ТΓ-3	ТШЛ20Б-III КТ 0,2 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		300/GPS (резервный), тайм- й)		частоты		
4	ΤΓ-4	ТШЛ20Б-III КТ 0,2 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		Е 300/с зный)		жени и		
5	ТΓ-5	ТШЛ20Б-Ш КТ 0,2 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		LANTIME I» (резервн		онов вре	Активная, реактивная	
6	ТΓ-6	ТШЛ20Б-III КТ 0,2 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		\simeq	Росэнергоатом»	IVS (основной), тайм-серверы , входящие в состав эталонов времени и частоты ФГУП ный)		
7	ТΓ-7	ТШЛ20Б-III КТ 0,2 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5	ервер станции	<u> </u>				
8	ТГ-8	ТШЛ20Б-III КТ 0,2 18000/5	GSES 24D KT 0,2 20000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5	Сервер	_ >	'			
9	ВЛ 750 кВ Курская АЭС - ПС Металлур- гическая	SAS 800 KT 0,2S 3000/1	ТЕНМГ 765 KT 0,2 750000/√3/100/√3 ТЕНМГ 765 KT 0,2 750000/√3/100/√3 VCU (мод. VCU-765) KT 0,2 750000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		GPS-приемник типа 16HVS (основной), NTP-сервер серверы, входящие в состав эталонов времени и част				
10	ВЛ 750 кВ Курская АЭС - ПС Новобрян- ская	SAS 800 KT 0,2S 3000/1	НДЕ-750-72 У1 КТ 0,5 750000/√3/100/√3 НДЕ-750-72 У1 КТ 0,5 750000/√3/100/√3 НДЕ-750-72 У1 КТ 0,5 750000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5				GPS-приемник типа 16HVS «ВНИИФТРИ» (резервный		

Продолжение таблицы 2

1	одолжение т 2	3	4	5	6	7	8	9	10
11	ВЛ 750 кВ Курская АЭС - ПС Северо - Украинс- кая	SAS 800 KT 0,2S 3000/1	ТЕНМ 765 КТ 0,2 750000/√3/100/√3 ТЕНМ 765 КТ 0,2 750000/√3/100/√3 VCU (мод. VCU-765) КТ 0,2 750000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		300/GPS (резервный), тайм-		и частоты ФГУП	
12	ВЛ 330 кВ Курская АЭС - ПС Южная 1	ТG 145-420 (мод. TG 420) КТ 0,2S 1500/1 ТG 145-420 (мод. TG 420) КТ 0,2S 1500/1	ТЕМР (мод. ТЕМР 362) КТ 0,5 330000/√3/100/√3 ТЕМР (мод. ТЕМР 362) КТ 0,2 330000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5	нции	времени типа LANTIME І «ВНИИФТРИ» (резервный	Росэнергоатом»	тайм-серверы , входящие в состав эталонов времени и частоты ФГУП	ктивная
13	ВЛ 330 кВ Курская АЭС - ПС	ТG 145-420 (мод. TG 420) КТ 0,2S 1500/1 ТG 145-420 (мод. TG 420) КТ 0,2S 1500/1	ТЕМР (мод. ТЕМР 362) КТ 0,5 330000/√3/100/√3 ТЕМР (мод. ТЕМР 362) КТ 0,2 330000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5	Сервер станции	(основной), NTP-сервер точного эталонов времени и частоты ФГУП	Сервер АО «Концерн	йм-серверы , входящи	Активная, реактивная
14	ВЛ 330 кВ Курская АЭС - ПС Сумы Северная	ТG 145-420 (мод. TG 420) КТ 0,2S 1500/1 ТG 145-420 (мод. TG 420) КТ 0,2S 1500/1	СРВ 72-800 (мод. СРВ 362) КТ 0,2 330000/√3/100/√3 ТЕМР (мод. ТЕМР 362) КТ 0,2 330000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		16HVS (основной состав эталонов в		_•	
15	ВЛ 330 кВ Курская АЭС - ПС	ТG 145-420 (мод. ТG 420) КТ 0,2S 1500/1 ТG 145-420 (мод. ТG 420) КТ 0,2S 1500/1	СРВ 72-800 (мод. СРВ 362) КТ 0,2 330000/√3/100/√3 СРВ 72-800 (мод. СРВ 362) КТ 0,2 330000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		GPS-приемник типа 16HVS (основной серверы, входящие в состав эталонов в		GPS-приемник типа 16HVS (основной) «ВНИИФТРИ» (резервный)	

Продолжение таблицы 2

1	должение <u>1</u> 2	3	4	5	6	7	8	9	10
16	ВЛ 330 кВ Курская АЭС - ПС Железно-	ТG 145-420 (мод. ТG 420) КТ 0,2S 1500/1 ТG 145-420 (мод. TG 420) КТ 0,2S	ТЕМР (мод. ТЕМР 362) КТ 0,5 330000/√3/100/√3 ТЕМР (мод. ТЕМР 362) КТ 0,2 330000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5					
17	ВЛ 330 кВ Курская АЭС - ПС Курская	TG 145-420 (мод. TG 420) КТ 0,2S 1500/1	ТЕМР (мод. ТЕМР 362) КТ 0,5 330000/√3/100/√3 ТЕМР (мод. ТЕМР 362) КТ 0,2 330000/√3/100/√3 ТЕМР (мод. ТЕМР 362) КТ 0,2 330000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/05	Сервер станции	ик типа 16HVS (основной), NTP-сервер точного времени типа LANTIME 300/GPS тайм-серверы, входящие в состав эталонов времени и частоты ФГУП «ВНИИФТРИ»	«Концерн Росэнергоатом»	лпа 16HVS (основной), тайм-серверы , входящие в состав эталонов времени и ВНИИФТРИ» (резервный)	Активная, реактивная
18	1ТР сторона 6 кВ н.А	ТШЛ-СВЭЛ-10 КТ 0,2S 3000/5	HOM-6 KT 0,5 6000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5	ŭ	(основной), N входящие в сос	Cepsep AO «J	ппа 16HVS (основной), тай ВНИИФТРИ» (резервный	Акти
19	1ТР сторона 6 кВ н.Б	ТШЛ-СВЭЛ-10 KT 0,2S 3000/5	HOM-6 KT 0,5 6000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		VS (осно ы, входя	Cep	/S (основ ГРИ» (ре	
20	1ТР сторона 110 кВ	TG145-420 (мод. TG145N) KT 0,2S 800/1	СРА 72-550 (мод. СРА 123) КТ 0,2 110000/√3/100/√3	A1802RAL- P4GB-DW-4 KT 0,2S/0,5		ик типа 16HVS, тайм-серверы,		ик типа 16НV УП «ВНИИФ	
21	ВЛ 110 кВ Курская АЭС - Льгов с отпайками	TG145-420 (мод. TG145N) КТ 0,2S	СРА 72-550 (мод. СРА 123) КТ 0,2 110000/√3/100/√3	A1802RAL- P4G-DW-4 KT 0,2S/0,5		GPS-приемник та (резервный), тайм (резервный)		GPS-приемник ти частоты ФГУП «	

Пределы допускаемой основной относительной погрешности измерительного канала (параметры сети: напряжение (0,98-1,02) Uном; ток (0,01-1,2) Іном, соѕ φ =0,9 инд; температура окружающей среды (20±5) и относительной погрешности в рабочих условиях измерительного канала (далее-ИК) при измерении активной (реактивной) электрической энергии в рабочих условиях эксплуатации (параметры сети: напряжение (0,9-1,1) Uном, ток (0,01-1,2) Іном, 0,5 инд. \leq соѕ φ <0,8 емк, погрешность измерений $d_{1(2)\%}P$ и $d_{1(2)\%}Q$ для соѕj < 1,0 нормируется от $I_{2\%}$. Температура окружающего воздуха в месте расположения счетчиков электроэнергии от 10 до 35°C) приведены в таблицах 3,4.

Таблица 3 - Пределы допускаемой основной относительной погрешности и относительной погрешности измерительного канала в рабочих условиях эксплуатации АИИС КУЭ при

измерении активной электрической энергии

измерении активной электрической энергии							
Номер измерительного канала	Коэффициент мощности cos j	Пределы допускаемой основной относительной погрешности ИК при измерении активной электроэнергии d, %					
Kariasia	Коэм	I _{1(2)%≤} Iи3м <i<sub>5%</i<sub>	I _{5%} ≤Iизм <i <sub="">20%</i>	І 20%≤Іизм<І _{100%}	I _{100%} ≤Iизм≤I _{120%}		
1.2	1,0	не норм.	±1,7	±0,9	±0,7		
1, 2	0,8	не норм.	±2,8	±1,5	±1,1		
	0,5	не норм.	±5,3	±2,7	±1,9		
2.0	1,0	не норм.	±0,9	$\pm 0,5$	±0,4		
3-8	0,8	не норм.	±1,3	±0,7	±0,6		
	0,5	не норм.	±2,0	±1,1	±0,9		
9, 11, 14, 15,	1,0	±1,0	±0,5	$\pm 0,4$	±0,4		
20, 21	0,8	±1,3	±0,8	±0,6	±0,6		
	0,5	±2,0	±1,2	±0,9	±0,9		
10,12,13,16,17,	1,0	±1,1	±0,8	±0,7	±0,7		
18,19	0,8	±1,5	±1,1	±0,9	±0,9		
	0,5	±2,3	±1,7	±1,4	±1,4		
Номер измерительного	Коэффициен т мощности cos j	Пределы допускаемой относительной погрешности ИК при измерении активной электроэнергии в рабочих условиях эксплуатации d, %					
канала	Коэф т мог сс	$I_{1(2)\%}$ \leq I изм $<$ $I_{5\%}$	I _{5%} ≤Iизм <i<sub>20%</i<sub>	I _{20%} ≤Iизм <i<sub>100</i<sub>	I _{100%} ≤Iизм≤I _{120%}		
1.2	1,0	не норм.	±1,8	±1,1	±0,9		
1, 2	0,8	не норм.	±2,9	±1,6	±1,2		
	0,5	не норм.	±5,4	±2,8	±2,0		
3-8	1,0	не норм.	±1,1	±0,8	±0,7		
3-8	0,8	не норм.	±1,4	±1,0	±0,9		
	0,5	не норм.	±2,1	±1,3	±1,1		
9, 11, 14, 15,	1,0	±1,2	±0,8	±0,7	±0,7		
20, 21	0,8	±1,4	±1,1	±0,9	±0,9		
	0,5	±2,1	±1,4	±1,1	±1,1		
10,12,13,16,17,	1,0	±1,3	±1,0	±0,9	±0,9		
18,19	0,8	±1,6	±1,3	±1,1	±1,1		
	0,5	±2,4	±1,8	±1,6	±1,6		

Таблица 4 - Пределы допускаемой основной относительной погрешности и относительной погрешности измерительного канала в рабочих условиях эксплуатации АИИС КУЭ при

измерении реактивной электрической энергии

измерении реакт	ивнои элект						
Номер	TI.	Пределы допускаемой основной относительной погрешности					
измерительного канала	ициен юсти /sinj	ИК при и	змерении реактив	ной электроэнер	гии d , %		
	Коэффициент мощности cos j /sinj	I _{1(2)%} ≤I _{изм} <i<sub>5%</i<sub>	$I_{5\%} \leq I_{_{_{\!H_{3M}}}} < I_{20\%}$	I _{20%} ≤I _{изм} <i<sub>100%</i<sub>	$I_{100\%} \le I_{_{_{\!H3M}}} \le I_{120\%}$		
1, 2	0,8/0,6	не норм.	±4,3	±2,2	±1,6		
	0,5/0,87	не норм.	±2,6	±1,4	±1,1		
• 0	0,8/0,6	не норм.	±1,9	±1,1	±1,0		
3-8	0,5/0,87	не норм.	±1,5	±0,9	±0,8		
9, 11, 14, 15,	0,8/0,6	±1,9	±1,4	±1,0	±1,0		
20, 21	0,5/0,87	±1,5	±1,2	±0,8	±0,8		
10,12,13,16,17,	0,8/0,6	±2,1	±1,7	±1,3	±1,3		
18,19	0,5/0,87	±1,6	±1,4	±1,0	±1,0		
		Пределы допускаемой относительной погрешности ИК измерении реактивной электроэнергии в рабочих услов эксплуатации d, %					
Номер измерительного канала	фициент цности ј /sinj		активной электро	энергии в рабочі			
измерительного	Коэффициент мощности cos j /sinj		активной электро	энергии в рабочі			
измерительного	Коэффициент — мощности — cos j /sinj	измерении ре	активной электро эксплуатаг	энергии в рабочі ции d, %	их условиях		
измерительного канала		измерении ре I _{1(2)%} ≤I _{изм} <i<sub>5%</i<sub>	еактивной электро эксплуатаг $I_{5\%} \le I_{_{ИЗМ}} < I_{20\%}$	рэнергии в рабочи $d,\%$ $I_{20\%}{\le}I_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	их условиях $I_{100\%} \le I_{_{\rm H3M}} \le I_{120\%}$		
измерительного канала	0,8/0,6	измерении ре I _{1(2)%} ≤I _{изм} <i<sub>5% не норм.</i<sub>	активной электро эксплуата I _{5%} ≤I _{изм} <i<sub>20% ±4,6</i<sub>	рэнергии в рабочи дии d, % $I_{20\%}{\le}I_{_{\rm H3M}}{<}I_{100\%}$ $\pm2,6$	их условиях $I_{100\%} \le I_{_{H3M}} \le I_{120\%}$ ±2,1		
измерительного канала	0,8/0,6	измерении ре I _{1(2)%} ≤I _{изм} <i<sub>5% не норм. не норм.</i<sub>	еактивной электро эксплуатав $I_{5\%}{\le}I_{_{\rm H3M}}{<}I_{20\%}$ $\pm 4,6$ $\pm 3,0$	рэнергии в рабочи ции d, % $I_{20\%} \le I_{изм} < I_{100\%}$ ± 2.6 ± 2.0	их условиях $I_{100\%} \le I_{H3M} \le I_{120\%}$ $\pm 2,1$ $\pm 1,8$		
измерительного канала 1, 2 3-8 9, 11, 14, 15,	0,8/0,6 0,5/0,87 0,8/0,6	измерении ре I _{1(2)%} ≤I _{изм} <i<sub>5% не норм. не норм. не норм.</i<sub>	еактивной электро эксплуатав $I_{5\%} \le I_{\text{изм}} < I_{20\%}$ $\pm 4,6$ $\pm 3,0$ $\pm 2,4$	рэнергии в рабочн ции d, % $I_{20\%} \le I_{изм} < I_{100\%}$ $\pm 2,6$ $\pm 2,0$ $\pm 1,8$	их условиях $I_{100\%} \le I_{изм} \le I_{120\%}$ ± 2.1 ± 1.8 ± 1.7		
измерительного канала 1, 2 3-8	0,8/0,6 0,5/0,87 0,8/0,6 0,5/0,87	измерении ре I _{1(2)%} ≤I _{изм} <i<sub>5% не норм. не норм. не норм. не норм.</i<sub>	$I_{5\%} \le I_{изм} < I_{20\%}$ $\pm 4,6$ $\pm 3,0$ $\pm 2,4$ $\pm 2,1$	рэнергии в рабочн ции d, % $I_{20\%} \le I_{изм} < I_{100\%}$ $\pm 2,6$ $\pm 2,0$ $\pm 1,8$ $\pm 1,6$	$I_{100\%} \le I_{_{ИЗМ}} \le I_{120\%}$ $\pm 2,1$ $\pm 1,8$ $\pm 1,7$ $\pm 1,6$		
измерительного канала 1, 2 3-8 9, 11, 14, 15,	0,8/0,6 0,5/0,87 0,8/0,6 0,5/0,87 0,8/0,6	измерении ре $I_{1(2)\%} \le I_{изм} < I_{5\%}$ не норм. не норм. не норм. $\pm 2,4$	$I_{5\%} \le I_{_{\rm ИЗM}} < I_{20\%}$ $\pm 4,6$ $\pm 3,0$ $\pm 2,4$ $\pm 2,1$ $\pm 2,0$	рэнергии в рабочн ции d, % I _{20%} ≤I _{изм} <i<sub>100% ±2,6 ±2,0 ±1,8 ±1,6 ±1,7</i<sub>	$I_{100\%} \le I_{_{\rm ИЗM}} \le I_{120\%}$ $\pm 2,1$ $\pm 1,8$ $\pm 1,7$ $\pm 1,6$ $\pm 1,7$		

Надежность применяемых в системе компонентов:

электросчётчик Альфа А1800

- среднее время наработки на отказ не менее 120 000 ч,
- среднее время восстановления работоспособности не более 2 ч;

Сервер станции и сервер ИВК

- средняя наработка на отказ: 165974 ч;
- среднее время восстановления работоспособности: не более 1 ч.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;

- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах;
- организация доступа к информации ИВКЭ, ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала; защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий:

- фактов параметрирования счетчика;
- фактов пропадания напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
- по результатам автоматической самодиагностики;
- перерывы питания электросчетчика с фиксацией времени пропадания и восстановления;
- фактов коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени.

Возможность коррекции времени в:

- счетчике (функция автоматизирована);
- серверах (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии Альфа A1800-тридцатиминутный профиль нагрузки в двух направлениях составляет 180 суток для счетчиков Альфа A1800, при отключении питания информация сохраняется менее 10 лет;
- ИВКЭ- хранение результатов измерений и информации о состоянии средств измерений не менее 3,5 лет
- ИВК- хранение результатов измерений и информации о состоянии средств измерений не менее 3.5 лет.

Знак утверждения типа

наносится на титульный лист формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование компонента системы	Номер в Гос.реестре средств измерений средств измерений	Количество
1	2	3
Трансформатор тока ТШЛ20Б-III, KT 0,5	4242-74	6 шт.
Трансформатор тока ТШЛ20Б-III, KT 0,2	4242-74	18 шт.
Трансформатор тока SAS-800, КТ 0,2S	25121-07	9 шт.
Трансформатор тока TG 420, КТ 0,2S	15651-06	36 шт.
Трансформатор тока ТШЛ-СВЭЛ-10, КТ 0,2S	48852-12	6 шт.
Трансформатор тока TG145-420 (мод.TG145N), КТ 0,2S	30489-05	6 шт.
Трансформатор напряжения GSES 24D, KT 0,2	48526-11	24шт.
Трансформатор напряжения TEHMF 765, KT 0,2	55517-13	12 шт.
Трансформатор напряжения TEMP (мод. ТЕМР 362, КТ 0,2 и КТ 0,5	55517-13	18 шт./12 шт.
Трансформатор напряжения VCU (мод. VCU-765), КТ 0,2	53610-13	6 шт.

Продолжение таблицы 5

1	2	3
Трансформатор напряжения НДЕ-750-72 У1, КТ 0,5	4965-75	9 шт.
Трансформатор напряжения СРВ 72-800 (мод. СРВ 362), КТ 0,2	47844-11	9 шт.
Трансформатор напряжения НОМ-6, КТ 0,5	159-49	4 шт.
Трансформатор напряжения СРА 72-550, (мод. СРА 123), КТ 0,2	15852-06	3 шт.
Счетчики электрической энергии трехфазные многофункциональные A1802RAL-P4G-DW-4, КТ 0 ,2S/0,5	31857-11	20 шт.
Счетчики электрической энергии трехфазные многофункциональные A1802RAL-P4GB-DW-4, КТ 0,2S/0,5	31857-11	1 шт.
Сервер станции совместимый с платформой х86	-	1 шт.
Сервер АО «Концерн Росэнергоатом» совместимый с платформой x86	-	1 шт.
АРМ (системный блок, монитор, принтер, ИБП)	-	5 шт.
Устройство синхронизации времени на базе GPS-приемника типа УССВ-16HVS	-	2 шт.
Резервное устройство синхронизации времени NTP- сервер точного времени типа LANTIME M300/GPS	-	1 шт.
Резервное устройство синхронизации времени- тайм-	-	1 шт.
серверы, входящие в состав эталонов времени и частоты ФГУП «ВНИИФТРИ»		
Наименование документации		
Методика поверки МП 4222-02-7730035496-2016		1экз.
Формуляр ФО 4222-02-7730035496-2016		1экз.

Поверка

осуществляется по документу МП 4222-02-7730035496-2016 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала АО «Концерн Росэнергоатом» «Курская атомная станция». Методика поверки, утвержденному ФБУ «Самарский ЦСМ» 08 ноября 2016 г.

Основные средства поверки- по НД на измерительные компоненты:

- трансформаторы тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторы напряжения в соответствии с ГОСТ 8.216-2011«ГСИ. Трансформаторы напряжения. Методика поверки»;
- счетчики Альфа A1800 по документу «Счетчики электрической энергии трехфазные много-функциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», утвержденному ГЦИ СИ ФГУ «Ростест-Москва» в 2011 г;
- -устройство синхронизации системного времени УССВ-16HVS в соответствии с документом «Устройство синхронизации системного времени УССВ-16HVS. Методика поверки», утвержденным ГЦИ СИ ФБУ «Ростест-Москва» в феврале 2012 г;
 - радиочасы МИР РЧ-01, ГР № 27008-04;
 - термогигрометр CENTER 314, ГР №22129-09;
 - мультиметр «Ресурс-ПЭ-5», ГР № 33750-12.

Допускается применять средства поверки, не приведенные в перечне, но обеспечивающие определение метрологических характеристик АИИС КУЭ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке, оформленное в соответствии с приказом Минпромторга России № 1815 от 02.08.2015 года «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

Сведения о методиках (методах) измерений

приведены в документе «Методика (метод) измерений электроэнергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) филиала АО «Концерн Росэнергоатом» «Курская атомная станция». НВЦП. 422200.094. МВИ». Аттестована ФБУ «Самарский ЦСМ». Свидетельство об аттестации методики (метода) измерений № 150/RA.RU 311290/2015/2016 от 02 ноября 2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) филиала АО «Концерн Росэнергоатом» «Курская атомная станция»

 Γ ОСТ Р 8.596-2002 Γ СИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия

ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия

ГОСТ 31819.22-2012. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности $0.2~\mathrm{S}$ и $0.5~\mathrm{S}$

ГОСТ 31819.23-2012. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии. (IEC 62053-23:2003, MOD)

Изготовитель

Акционерное общество «Российский концерн по производству электрической и тепловой энергии на атомных станциях» (АО «Концерн Росэнергоатом»)

ИНН 7721632827

Адрес:109507, г. Москва, ул. Ферганская, д. 25

Телефон: (495) 647-41-89, 517-92-80

Заявитель

Акционерное общество «Электроцентроналадка» (АО «ЭЦН»)

Адрес (юридический): 121059 г. Москва, Бережковская набережная, д. 16, корп. 2

Адрес: 121059, г. Москва, а/я 1

Телефон (факс): +7(495) 221-67-00; +7(495) 240-67-10, доб.14-17/+7(499) 240-45-79

ИНН 7730035496

Испытательный центр

Федеральное бюджетное учреждение «Самарский центр стандартизации, метрологии и испытаний в Самарской области» (ФБУ «Самарский ЦСМ»)

Адрес: 443013, г. Самара, пр. Карла Маркса, 134

Телефон (факс): (846) 3360827

Аттестат аккредитации ФБУ «Самарский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU 311281 от 16.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев