ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Течеискатели масс-спектрометрические гелиевые серии VS

Назначение средства измерений

Течеискатели масс-спектрометрические гелиевые серии VS (далее по тексту - течеискатели) предназначены для измерений потоков гелия при проведении неразрушающего контроля герметичности, обнаружения мест нарушения герметичности различных систем и объектов, допускающих откачку внутренней полости, заполнение гелием или смесью газов, содержащих гелий.

Описание средства измерений

Течеискатель представляет собой комплексную систему для поиска и/или измерения размеров течей внутрь или наружу какого-либо устройства или емкости. Обнаружение течей происходит, когда индикаторный газ (гелий) вводится в испытуемый компонент, который соединен с системой течеискателя. Гелий, поступающий из испытуемого компонента, проходит сквозь систему, его парциальное давление измеряется, а результаты отображаются на измерительном устройстве.

Принцип работы течеискателя заключается в ионизации газов в вакууме и их ускорения под действием перепада напряжения и магнитного поля. Ионы гелия отделяются и собираются (достигают ионного коллектора), а полученный в результате ионный ток усиливается и отображается на измерительном устройстве или дисплее.

Конструктивно течеискатель состоит из следующих компонентов: спектрометра, настроенного на выявление массы гелия; вакуумной системы для поддержания низкого давления в спектрометре; механического насоса для вакуумирования испытуемого экземпляра; клапанов, обеспечивающих переход к различным этапам цикла обнаружения течи (откачка, тестирование, вентилирование); усилителя и электронных устройств, контролирующих выходной сигнал спектрометра; источников электропитания и органов управления, контролирующих последовательность работы клапанов, схемы защиты и т.д.; креплений, с помощью которых испытуемый компонент крепится к течеискателю, пульта оператора (ЖК-дисплей с сенсорной панелью и двумя аппаратными кнопками: TEST и VENT).

Поиск течей осуществляется как в ручном, так и в автоматическом режиме с целью повышения скорости тестирования. Также в течеискателях реализован режим поиска течей способом щупа.

Гелий подается в потенциальное место утечки с помощью распылительного зонда или посредством изолирования предполагаемого участка. При наличии места нарушения герметичности, атомы гелия попадают в масс-спектрометрический анализатор.

Течеискатель имеет функцию обнуления фонового уровня. Эта функция исключает зарегистрированный фоновый сигнал, позволяя измерять только реальную скорость (интенсивность) утечки. Функция обнуления позволяет проводить испытание с уровнем чувствительности, расположенным ниже фонового уровня системы.

Течеискатели имеют 8 модификаций отличающихся конфигурацией, расположением и типом насоса для откачки испытуемого экземпляра. Модель PR02 оснащена внутренним механическим насосом DS-42, модель PD03 оснащена внутренним спиральным насосом IDP-3, модели MD30, BD30 оснащаются внешним спиральным насосом TS620, модели MR15, MD15, BR15, BD15 оснащаются внешним спиральным насосом IDP-15.

Модели MR15, MD30 и MD15 оснащены дополнительной двухколесной тележкой.

По дополнительному заказу течеискатель может быть оборудован беспроводным дистанционным управлением посредством установки в корпус течеискателя платы модуля беспроводной связи и беспроводного пульта дистанционного управления, который позволяет управлять работой до 10 течеискателей на расстоянии до 100 м, путем выбора МАС-адреса.

Пломбировка корпуса течеискателя не предусмотрена. Внешний вид течеискателей приведен на рисунках 1 и 2.

Рисунок 1 - Внешний вид течеискателей моделей PR02, PD03, BD15, BR15, BD30

Рисунок 2 - Внешний вид течеискателей моделей MR15, MD30 и MD15

Программное обеспечение

Течеискатели имеют встроенное программное обеспечение (ПО), разработанное изготовителем специально для решения задач измерения потоков гелия при проведении неразрушающего контроля герметичности, обнаружения мест нарушения герметичности различных систем и объектов, допускающих откачку внутренней полости, заполнение гелием, либо смесью газов, содержащих гелий.

ПО выполняет следующие функции:

- управление работой вакуумной системой течеискателя (работой вакуумных насосов, клапанов);
- управление работой масс-спектрометрического анализатора (определение чувствительности, настройка на пик гелия);
- прием, обработка и отображение измерительной информации от масс-спектрометрического анализатора;
 - формирование выходных сигналов, передача их на ЖК-дисплей течеискателя и ПК;
 - автоматическая диагностика состояния течеискателя.

Идентификационные данные встроенного программного обеспечения представлены в таблице 1.

Таблица 1 - Идентификационные данные встроенного ПО

Идентификационные данные (признаки) ПО	Значение
Идентификационное наименование ПО	LeakDetector
Номер версии (идентификационный номер) ПО	не ниже LD03.12
Цифровой идентификатор ПО	-

Информация о версии ПО доступна через меню прибора: номер версии отображается на ЖК-дисплее.

Влияние встроенного ПО течеискателей учтено при нормировании метрологических характеристик. Уровень защиты ПО от преднамеренных или непреднамеренных изменений течеискателей - средний в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические и технические характеристики течеискателей

таолица 2 - Метрологические и технические характеристики течейскателей									
Наименование характеристики	Значения характеристики для модификации								
таименование характеристики	PR02	PD03	BD15	MD15	BR15	MR15	BD30	MD30	
Диапазон измерений потока газа									
в вакууме по входу	от 5 № 0 ⁻¹³ до 1 № 0 ⁻⁵								
течеискателя, $\Pi a \cdot m^3/c^*$									
Диапазон показаний потока газа				_	_				
в вакууме по входу	от 5×10 ⁻¹³ до 1×10 ⁻¹								
течеискателя, $\Pi a \cdot m^3/c$									
Диапазон показаний потока газа					_				
в вакууме при работе способом	от 1×10 ⁻¹⁰ до 1×10 ⁻¹								
щупа, Пажи ³ /с									
Пределы допускаемой									
относительной погрешности									
измерений, % от измеряемой									
величины (где $Q_{\text{нпи}}$ - нижний									
предел измерений $Q_{\scriptscriptstyle \rm H3M}$ -									
значение измеренного потока,									
$\Pi a \cdot m^3/c$)									
- в режиме FINE TEST:	$\pm (0.30 + Q_{\text{нпи}}/Q_{\text{изм}}) \cdot 100$								
- в режиме TEST:	±50								

Окончание таблицы 2

Наименование характеристики		Значения характеристики для модификации:						
		PD03	BD15	MD15	BR15	MR15	BD30	MD30
Время установления выходного сигнала, мин, не более	3,0							
Параметры электропитания сети переменного тока, В	от 198 до 242							
Потребляемая мощность, В А , не более	2760							
Габаритные размеры, мм, не более длина ширина	401 575		622 589					
высота	42	25	1043					
Масса, кг, не более	38	40	85	98	75	85	83	96
Средняя наработка до метрологического отказа, ч	15000							
Средний срок службы, лет	8							
Условия эксплуатации: - температура окружающей среды, °С - относительная влажность, %, - атмосферное давление, кПа	от 15 до 30 80 от 84 до 106,7							

^{*} Производная единица величины потока газа в вакууме Па·м³/с образована в соответствии с п.5.2.1. ГОСТ 8.417-2002 на основании уравнения связи (измерений), полученного из уравнения состояния идеального газа

Знак утверждения типа

наносится на корпус течеискателя методом наклейки или иным методом и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 3 - Комплект поставки

Наименование частей	Обозначение	Кол-во
Течеискатель соответствующей модификации	-	1 шт.
Руководство по эксплуатации	РЭ	1 экз.
Методика поверки	МП 231-0036-2016	1 экз.

Поверка

осуществляется по документу МП 231-0036-2016 «Течеискатели масс-спектрометрические гелиевые серии VS. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» $22.08.2016\ \Gamma$.

Основные средства поверки:

Государственный вторичный (рабочий) эталон единицы потока газа в вакууме в диапазоне 10^{-12} - 1 $\Pi a \cdot m^3/c$ ГВЭТ 49-2-2006, СКО: в диапазоне от 10^{-12} до 10^{-9} $\Pi a \cdot m^3/c$ не более (0,1 - 0,015); в диапазоне свыше 10^{-9} до 1 $\Pi a \cdot m^3/c$ не более 0,015.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус течеискателя, если это позволяют условия эксплуатации и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к течеискателям масс-спектрометрическим гелиевым серии VS

ГОСТ 28517-90 «Контроль неразрушающий. Масс-спектрометрический метод течеискания. Общие требования».

ГОСТ Р 53177-2008 «Вакуумная техника. Определение характеристик массспектрометрического метода контроля герметичности».

Техническая документация фирмы «Agilent Technologies Bayan Lepas Free», Малайзия.

Изготовитель

Фирма «Agilent Technologies Bayan Lepas Free», Малайзия

Адрес: Industrial Zone-Phase 3 11900 Penang, Malaysia

Тел: +60 4-680 3888

E-mail: <u>contact_us@agilent.com</u> Web-сайт: www.agilent.com

Заявитель

ООО «Аджилент Технолоджиз»

ИНН 7705304064

Адрес: 115054, Москва, Космодамианская набережная, дом 52, строение 1

Тел: +7 (495) 664-73-00, факс: +7 (495) 664-73-01 E-mail: moscow_reception.russia@agilent.com

Web-сайт: www.agilent.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, Санкт-Петербург, Московский пр., д.19

Телефон: (812) 251-76-01, факс (812) 713-01-14

Web-сайт: <u>www.vniim.ru</u> E-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2017 г.