ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Динамометры электронные переносные ДЭП

Назначение средства измерений

Динамометры электронные переносные ДЭП (далее - динамометры) предназначены для измерений статических и медленно изменяющихся сил растяжения и сжатия.

Описание средства измерений

Принцип действия динамометров заключается в преобразовании деформации упругого элемента, вызванной действием приложенной силы, в электрический сигнал.

Динамометр состоит из упругого элемента с наклеенными на нем тензорезисторами, силовводящих элементов, электронного блока и соединительного кабеля.

Тензорезисторы соединены между собой по мостовой схеме, включающей элементы термокомпенсации и нормирования. Приложенная к динамометру сила вызывает разбаланс тензорезисторного моста. Аналоговый электрический сигнал разбаланса моста поступает в электронный блок для аналого-цифрового преобразования, обработки и индикации результата измерений.

Силовводящие элементы обеспечивают условия силовведения и монтажа динамометра. Электронный блок при помощи клавиш управления позволяет осуществить дополнительные функциональные возможности:

- установление нулевых показаний;
- индикацию пиковых значений приложенной нагрузки.

В динамометрах могут применяться электронные блоки шести типов. Электронные блоки типов 1 - 5 выпускаются в пластиковом корпусе. Электронные блоки типа 6 могут быть выполнены в пластиковом корпусе и в корпусе из нержавеющей стали. Электронные блоки типов 4 и 5 могут выпускаться как в проводном, так и в дистанционном исполнении. Внешний вид электронных блоков представлен на рисунках 1 - 7.

Модификации динамометров отличаются видом измеряемой силы, наибольшими пределами измерений, классами точности, габаритными размерами упругих элементов и массой.

Динамометры имеют обозначение ДЭП/И-АД-НВ-К, где

- А обозначение варианта исполнения упругого элемента (1; 2; 3; 4; 5; 6; 7; 8);
- Н наибольший предел измерений (НПИ), кН;
- В вид измеряемой силы (Р растяжение, С сжатие, У универсальный);
- К класс точности (00; 0,5; 1; 2).
- И обозначение типа электронного блока:
- 1- обозначение электронного блока тип 1;
- 2- обозначение электронного блока тип 2;
- 3- обозначение электронного блока тип 3;
- 4- обозначение электронного блока тип 4;
- 5- обозначение электронного блока тип 5;
- 6- обозначение электронного блока тип 6 в пластиковом корпусе;
- 7- обозначение электронного блока тип 6 в корпусе из нержавеющей стали.

Рисунок 1 - Внешний вид электронного блока тип 1

Рисунок 2 - Внешний вид электронного блока тип 2

Рисунок 3 - Внешний вид электронного блока тип 3

Рисунок 4 - Внешний вид электронного блока тип 4

Исполнение 5

Рисунок 5 - Внешний вид электронного блока тип 5

Рисунок 6 - Внешний вид электронного блока тип 6 в пластиковом корпусе

Исполнение 8

Рисунок 7 - Внешний вид электронного блока тип 6 в корпусе из нержавеющей стали

Варианты исполнения упругого элемента приведены на рисунке 8.

Исполнение 1

Исполнение 2

Исполнение 3

Исполнение 4

Рисунок 8 - Варианты исполнения упругого элемента

Исполнение 7

Исполнение 6

Схема пломбировки от несанкционированного доступа и обозначение места для нанесения оттиска клейма приведена на рисунке 9.

Рисунок 9. Схема пломбировки от несанкционированного доступа и обозначение места для нанесения оттиска клейма

Программное обеспечение

В динамометрах используется встроенное в электронный блок программное обеспечение, которое жестко привязано к электрической схеме. Программное обеспечение выполняет функции по сбору, обработке и предоставлению измерительной информации. Корпус электронного блока защищен пломбой.

Идентификационные данные программного обеспечения приведены в таблице 1

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значения					
	Тип 1	Тип 2	Тип 3	Тип 4	Тип 5	Тип 6
Идентификационное наименование программного обеспечения	WI-4	R420	R320	WI- 280	WI- 280M	WI-19
Номер версии (идентификационный номер) программного обеспечения*	Ur05.88	U 2.64	U 3.92	U 2.21	Uer 2.10	U 138
Цифровой идентификатор программ- ного обеспечения	-	-	-	-	-	-

Примечание: * Номер версии программного обеспечения должен быть не ниже номера, указанного в таблице 1.

Идентификация программы: номер версии программного обеспечения отображается на электронном блоке при включении динамометра.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует среднему уровню по Р 50.2.077-2014.

Влияние программного обеспечения на метрологические характеристики учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Таблица 2 - Пределы допускаемой относительной погрешности динамометра

	Пределы допускаемой
Обозначение динамометра	относительной погрешности
	динамометра, %
ДЭП/И-АД-НВ-00	±0,06
ДЭП/И-АД-НВ-0,5	±0,12
ДЭП/И-АД-НВ-1	±0,24
ДЭП/И-АД-НВ-2	±0,45

Таблица 3 - Наибольшие пределы измерений X и предельные значения составляющих погрешности, связанных с воспроизводимостью показаний b, повторяемостью показаний b¢ градуировочной характеристикой f_c , дрейфом нуля f_0 , гистерезисом v и ползучестью c

Обозначение	Наибольший	Предельные значения, %					
динамометра [*]	предел измерений ^{**} , X, кН	b	b¢	f_c	f_0	ν	С
ДЭП/И -1Д-НВ-00 ДЭП/И -2Д-НВ-00 ДЭП/И -3Д-НВ-00 ДЭП/И -6Д-НВ-00	от 0,1 до 1000	0,05	0,025	±0,025	±0,012	0,07	0,025
ДЭП/И -1Д-НВ-0,5 ДЭП/И -2Д-НВ-0,5 ДЭП/И -3Д-НВ-0,5 ДЭП/И -4Д-НВ-0,5 ДЭП/И -5Д-НВ-0,5 ДЭП/И -6Д-НВ-0,5 ДЭП/И -8Д-НВ-0,5	от 0,1 до 1000	0,10	0,05	±0,05	±0,025	0,15	0,05
ДЭП/И -1Д-НВ-1 ДЭП/И -2Д-НВ-1 ДЭП/И -3Д-НВ-1 ДЭП/И -4Д-НВ-1 ДЭП/И -5Д-НВ-1 ДЭП/И -6Д-НВ-1 ДЭП/И -7Д-НВ-1 ДЭП/И -8Д-НВ-1	от 0,1 до 3000	0,20	0,10	±0,10	±0,050	0,30	0,10

Продолжение таблицы 3

Обозначение	Наибольший	Предельные значения, %					
динамометра*	предел измерений ^{**} ,	b	b¢	f_c	f_0	ν	С
	Х, кН						
ДЭП/И -1Д-НВ-2							
ДЭП/И -2Д-НВ-2							
ДЭП/И -3Д-НВ-2							
ДЭП/И -4Д-НВ-2	от 0,1 до 5000	0,40	0,20	±0,20	±0,10	0,50	0,20
ДЭП/И -5Д-НВ-2	01 0,1 до 3000	0,40	0,20	0,20	±0,10	0,50	0,20
ДЭП/И -6Д-НВ-2							
ДЭП/И -7Д-НВ-2							
ДЭП/И -8Д-НВ-2							

Примечание: *Технические и метрологические характеристики соответствуют требованиям ГОСТ Р 55223-2012

Таблица 4 - Максимальные габаритные размеры и масса упругого элемента с силовводящими элементами в зависимости от наибольшего предела измерений

Наибольший предел измерений	Масса, кг,	Габаритные размеры, мм, не бо		
динамометра, кН	не более	длина	ширина	высота
от 0,1 до 0,3 включ.	2	110	110	180
св. 0,3 до 10 включ.	3	120	120	200
св.10 до 50 включ.	5	150	150	240
св. 50 до 200 включ.	25	180	180	500
св. 200 до 1000 включ.	90	320	320	650
св. 1000 до 2000 включ.	125	360	360	970
св. 2000 до 3000 включ.	180	490	490	1100
св. 3000 до 5000 включ.	300	580	580	1350

Таблица 5 - Максимальные габаритные размеры и масса электронного блока

Тип электронного блока	Масса, кг,	Габаритные размеры, мм, не более			
тип электронного олока	не более	длина	ширина	высота	
Тип 1	1,5	170	70	110	
Тип 2	2	260	120	140	
Тип 3	1,5	170	80	100	
Тип 4	1	120	90	240	
Тип 5	1	100	40	180	
Тип 6 в пластиковом корпусе	2,5	280	200	120	
Тип 6 в корпусе из нержавеющей стали	3	280	160	80	

Таблица 6 - Технические характеристики

Наименование характеристики	Значение
Питание динамометров осуществляется:	
- от аккумуляторной батареи напряжением, В	6
- от сети переменного тока:	
- напряжение, В	от 187 до 242
- частота, Гц	от 49 до 51
- потребляемая мощность, Вт, не более	20

^{**} Динамометры с НПИ свыше 2000 кН выпускаются только на сжатие

Наименование характеристики	Значение
Условия эксплуатации:	
- температура окружающего воздуха, °С	от + 15 до + 25
- относительная влажность, %	от 45 до 80
Средний срок службы, лет	10
Вероятность безотказной работы за 1000 часов	0,9

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на несмываемую наклейку с маркировкой изготовителя, закрепленную на электронном блоке, фотохимическим способом.

Комплектность средства измерений

Таблица 7 - Комплектность средства измерений

- working	9	
Наименование	Обозначение	Количество
1 Динамометр электронный переносной	ДЭП	1 шт.
2 Руководство по эксплуатации	-	1 экз.
3 Методика поверки	МП 2301-290-2016	1 экз.

Поверка

осуществляется по документу МП 2301-290-2016 «Динамометры электронные переносные ДЭП. Методика поверки», утвержденному Φ ГУП «ВНИИМ им. Д.И. Менделеева» 12.09.2016 г.

Основные средства поверки:

машины силовоспроизводящие 1-го разряда по ГОСТ Р 8.640-2014.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус электронного блока.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к динамометрам электронным переносным ДЭП

ГОСТ 8.640-2014 «ГСИ. Государственная поверочная схема для средств измерений силы» ГОСТ Р 55223-2012 «Динамометры. Общие метрологические и технические требования».

ТУ 4274-034-74783058-2016 «Динамометры электронные переносные ДЭП. Технические условия».

Изготовитель

Общество с ограниченной ответственностью «ПетВес» (ООО «ПетВес»)

ИНН 7805357743

Адрес: 198097, Санкт-Петербург, ул. Трефолева, д.2., лит. АВ, пом. 24Н

Телефон: (812) 252-54-22, факс (812) 747-26-88

E-mail: alex@petves.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01, факс (812) 713-01-14

Web-сайт: <u>www.vniim.ru</u> E-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М-		2017 -
	М.п.	« »	2017 г.