# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

# Газоанализаторы портативные RAE Systems модель MicroRAE

# Назначение средства измерений

Газоанализаторы портативные RAE Systems модель MicroRAE (далее - газоанализаторы) предназначены для автоматического одновременного измерения содержания кислорода, токсичных газов и довзрывоопасной концентрации горючих газов, паров и их смесей в воздухе рабочей зоны, а также для сигнализации о превышении измеряемой величиной установленных пороговых значений.

### Описание средства измерений

Газоанализаторы портативные RAE Systems модель MicroRAE (RAE Systems и RAE Systems by Honeywell являются зарегистрированными марками Honeywell International Inc.) представляют собой переносные индивидуальные приборы непрерывного действия.

Конструктивно газоанализаторы выполнены в пластиковом обрезиненном корпусе. На лицевой панели корпуса расположены жидкокристаллический дисплей, две многофункциональных клавиши управления, отверстия звуковой сигнализации и забора пробы. По периметру корпуса расположены излучатели световой сигнализации. В нижней части корпуса находится разъем для подключения зарядного устройства. На тыльной стороне корпуса расположен зажим типа «крокодил» из нержавеющей стали.

Принцип действия газоанализаторов основан на следующих физико-химических методах анализа:

- электрохимический для измерения объемной кислорода  $(O_2)$ , сероводорода  $(H_2S)$ , оксида углерода (CO); цианистого водорода (HCN);
- термокаталитический для измерения концентрации горючих газов, паров и их смесей. Концентрация горючих компонентов может отображаться как в долях от нижнего концентрационного предела распространения пламени (% НКПР), так и в объёмных долях.

Способ отбора пробы - диффузионный.

Газоанализаторы обеспечивают выполнение следующих функций:

- измерение содержания от одного до четырех определяемых компонентов газовой смеси и отображение полученных значений на дисплее;
- сигнализацию (визуальную на дисплее, звуковую, световую, вибрация) о превышении заданных пороговых значений определяемого компонента, низком заряде батареи;
  - самодиагностику при включении и во время работы;
  - хранение журнала событий в энергонезависимой памяти;
  - обмен данными со смартфоном при помощи технологии Bluetooth ®;
- обмен данными с ПЭВМ при помощи кабеля передачи данных. Кабель подключается к ПЭВМ через USB порт.

Дополнительно газоанализаторы могут иметь функцию геолокации GPS и беспроводной передачи данных по технологии Mesh и Wi-Fi.

Газоанализаторы имеют степень защиты оболочки IP67 по ГОСТ 14254-96.

 Газоанализаторы выполнены во взрывозащищенном исполнении 1 Ex d ia IIC T4 Gb X, PO Ex ia I Ma X.

Общий вид газоанализатора и место пломбировки корпуса для ограничения несанкционированного доступа представлены на рисунках 1 - 2.







Рисунок 2 - Место пломбировки корпуса для ограничения несанкционированного доступа

# Программное обеспечение

Таблица 1 - Идентификационные данные программного обеспечения

| Идентификационные данные (признаки)       | Значение                     |
|-------------------------------------------|------------------------------|
| Идентификационное наименование ПО         | MicroRAE_V1.10(PGM-2600).hex |
| Номер версии (идентификационный номер ПО) | не ниже V1.10                |
| Цифровой идентификатор ПО                 | -                            |

Уровень защиты встроенного программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 - высокий.

# Метрологические и технические характеристики

Таблица 2 - Диапазоны измерений и пределы допускаемых значений основной погрешности

измерительных каналов токсичных газов и кислорода

|              | - Ranasion Token ministration | 1 ' '                             | _                   |               |
|--------------|-------------------------------|-----------------------------------|---------------------|---------------|
| Определяемый | Диапазон показаний,           | Диапазон измерений,               | Пределы допускаемых |               |
| компонент    | об. доля                      | об. доля                          | значений основной   |               |
|              |                               |                                   | погрешности, %      |               |
|              |                               |                                   | приведенной         | относительной |
|              |                               |                                   | к верхнему          |               |
|              |                               |                                   | значению            |               |
|              |                               |                                   | поддиапазона        |               |
|              |                               |                                   | измерений           |               |
| $O_2$        | от 0 до 30 %                  | от $0$ до $10$ % включ.           | ±5                  | -             |
|              |                               | св. 10 до 21 %                    | -                   | ±5            |
|              |                               |                                   |                     |               |
| $H_2S$       | от 0 до 100 млн <sup>-1</sup> | от $0$ до $10$ млн $^{-1}$ включ. | ±10                 | -             |
|              |                               | св. 10 до 100 млн <sup>-1</sup>   | -                   | ±10           |

| Определяемый | Диапазон показаний,          | Диапазон измерений,                    | Пределы до        | опускаемых    |
|--------------|------------------------------|----------------------------------------|-------------------|---------------|
| компонент    | об. доля                     | об. доля                               | значений основной |               |
|              |                              |                                        | погрешности, %    |               |
|              |                              |                                        | приведенной       | относительной |
|              |                              |                                        | к верхнему        |               |
|              |                              |                                        | значению          |               |
|              |                              |                                        | поддиапазона      |               |
|              |                              |                                        | измерений         |               |
| CO           | от $0$ до $1000$ млн $^{-1}$ | от $0$ до $50$ млн $^{-1}$ включ.      | ±10               | -             |
|              |                              | св. 50 до 1000 млн <sup>-1</sup>       | 1                 | ±10           |
| HCN          | от $0$ до $50$ млн $^{-1}$   | от $0$ до $1$ млн <sup>-1</sup> включ. | ±20               | -             |
|              |                              | св. 1 до 50 млн <sup>-1</sup>          | -                 | ±20           |

Таблица 3 - Диапазоны измерений и пределы допускаемых значений основной погрешности измерительного канала горючих компонентов.

| пэмерительного           | Ranasa ropio ina Rominonen    | 106.                   | ,                   |
|--------------------------|-------------------------------|------------------------|---------------------|
| Определяемый             | Диапазон показаний,           | Диапазон измерений, в  | Пределы допускаемых |
| компонент                | об. доля, %НКПР <sup>3)</sup> | котором нормируются    | значений основной   |
|                          |                               | характеристики погреш- | абсолютной          |
|                          |                               | ности, об. доля, %НКПР | погрешности, % НКПР |
| Сумма углево-            | от 0 до 100 % НКПР            | от 0 до 50 % НКПР      | ±5                  |
| дородов CH <sup>1)</sup> |                               |                        |                     |
| Meтaн <sup>2)</sup>      | от 0 до 4,4 %                 | от 0 до 2,2 %          | ±5                  |
| $(CH_4)$                 | (от 0 до 100 % НКПР)          | (от 0 до 50 % НКПР)    |                     |
| Пропан <sup>2)</sup>     | от 0 до 1,7 %                 | от 0 до 0,85 %         | ±5                  |
| $(C_3H_8)$               | (от 0 до 100 % НКПР)          | (от 0 до 50 % НКПР)    |                     |
| Водород <sup>2)</sup>    | от 0 до 4,0 %                 | от 0 до 2,0 %          | ±5                  |
| $(H_2)$                  | (от 0 до 100 % НКПР)          | (от 0 до 50 % НКПР)    |                     |

# Примечания:

- 1) Поверочным компонентом при измерении концентрации суммы углеводородов является метан (СН<sub>4</sub>).
- 2) Пределы допускаемых значений основной погрешности для каналов измерения метана, пропана, водорода нормированы при наличии в анализируемой среде только одного определяемого компонента.
- 3) Значения НКПР указаны для горючих газов и паров в соответствии с ГОСТ 30852.19-2002.

Таблица 4 - Дополнительные метрологические характеристики

| Наименование параметра                                                               | Значение |
|--------------------------------------------------------------------------------------|----------|
| Пределы допускаемой вариации показаний, в долях от пределов допускаемой ос-          |          |
| новной погрешности                                                                   |          |
| Пределы допускаемой дополнительной погрешности при изменении температуры             | 0,3      |
| окружающей и контролируемой сред в рабочих условиях эксплуатации от темпе-           |          |
| ратуры, при которой определялась основная погрешность, на каждые 10 °C, в до-        |          |
| лях от пределов допускаемой основной погрешности                                     |          |
| Время установления показаний $T_{0,9}$ , с, не более                                 |          |
| - для измерительного канала горючих компонентов                                      | 10       |
| - для измерительных каналов H <sub>2</sub> S, CO, O <sub>2</sub>                     | 40       |
| - для HCN                                                                            | 160      |
| Примечание - время установления показаний нормировано при скорости потока 0,5 л/мин. |          |

Таблица 5 - Основные технические характеристики

| Наименование параметра                        | Значение  |
|-----------------------------------------------|-----------|
| Габаритные размеры (длина×ширина×высота), мм, | 118x76x28 |
| не более:                                     |           |
| Масса, г, не более                            | 200       |
| Время зарядки, час, не более                  | 6         |
| Время работы после полной зарядки, час        |           |
| -без беспроводных подключений                 | 15        |
| -с беспроводными подключениями                | 11        |
| Срок службы сенсоров, месяцев, не менее       |           |
| - HCN                                         | 18        |
| -остальные сенсоры                            | 24        |
| Срок службы газоанализатора, лет, не менее    | 10        |

Таблица 6 - Условия эксплуатации

| Диапазон температуры окружающей среды, °С    | от -45 до +60              |
|----------------------------------------------|----------------------------|
| Диапазон атмосферного давления, кПа          | от 84 до 106,7             |
| Относительная влажность воздуха, %, не более | 95 (без конденсации влаги) |

## Знак утверждения типа

наносится на корпус газоанализаторов способом наклейки и титульный лист руководства по эксплуатации типографским способом.

# Комплектность средства измерений

Комплект поставки газоанализаторов приведен в таблице 7

Таблица 7

| Наименование                                          | Количество                                           |  |
|-------------------------------------------------------|------------------------------------------------------|--|
| Газоанализатор                                        | 1 шт. (количество сенсоров в соответствии с заказом) |  |
| Калибровочный колпачок                                | 1 шт.                                                |  |
| Адаптер переменного тока                              | 1 шт.                                                |  |
| Зарядное устройство                                   | 1 шт.                                                |  |
| Кабель передачи данных                                | 1 шт.                                                |  |
| Руководство по эксплуатации                           | 1 экз.                                               |  |
| Калибровочный сертификат                              | 1 экз.                                               |  |
| Методика поверки                                      | 1 экз. на партию                                     |  |
| Дополнительные принадлежности поставляются по заказу. |                                                      |  |

#### Поверка

осуществляется по документу МП 67356-17 «Газоанализаторы портативные RAE Systems модель MicroRAE. Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» 18 января  $2017 \, \Gamma$ .

Основные средства поверки:

- государственные стандартные образцы - поверочные газовые смеси (ГСО-ПГС), выпускающиеся по ТУ 2114-001-02567296-2015 состава метан - воздух № 10653 - 2015, пропан - воздух № 10653 - 2015, оксид углерода - воздух № 10653 - 2015, кислород - азот № 10651 - 2015, водород - азот № 10653 - 2015, выпускающиеся по ТУ 2114-014-20810646-2014 состава сероводород - азот № 10537-2014, HCN - азот № 10547 - 2014.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в виде оттиска поверительного клейма в свидетельство о поверке и (или) в паспорт.

# Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

# Нормативные и технические документы, устанавливающие требования к газоанализаторам портативным RAE Systems модель MicroRAE

ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны.

ГОСТ 14254-96 Степени защиты, обеспечиваемые оболочками (Код IP).

ГОСТ Р МЭК 60079-0-2011 Взрывоопасные среды. Часть 0. Оборудование. Общие требования.

Техническая документация фирмы-изготовителя.

#### Изготовитель

«RAE Systems Inc», CIIIA

3775 North First Street, San Jose, CA 95134

Завод-изготовитель «RAE Systems (Shanghai) Inc.», Китай

990 East Huiwang Road, Jiading District, Shanghai 201815

#### Заявитель

Закрытое акционерное общество «Хоневелл» (ЗАО «Хоневелл»)

ИНН 7710065870

Адрес: 121059, Москва, Киевская ул., 7

Тел. (495) 796-98-00, факс (495) 796-98-93/94

E-mail: info.ru@honeywell.com

# Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области»

(ФБУ «Нижегородский ЦСМ»)

Россия, 603950 г. Нижний Новгород, ул. Республиканская, д.1

Тел./факс (831) 428-78-78 E-mail: ncsmnnov@sinn.ru

Аттестат аккредитации ФБУ «Нижегородский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30011-13 от 27.11.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «\_\_\_ » \_\_\_\_\_ 2017 г.