ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики ВИС.Т3

Назначение средства измерений

Теплосчетчики ВИС.ТЗ (далее - теплосчетчики), предназначены для измерения и коммерческого учета тепловой энергии (количества теплоты), параметров и расхода теплоносителя в системах тепло-водо-хладоснабжения, дозирования жидких сред и кондиционирования воздуха.

Описание средства измерений

Принцип работы теплосчетчика основан на измерении расхода, температуры и давления теплоносителя в прямом и обратном трубопроводах систем теплоснабжения и последующем определении тепловой энергии, объёма и других параметров теплоносителя путём обработки измерений тепловычислителем.

Теплосчетчики (Рисунок 1) имеют два исполнения (ВС, ТС) и состоят из отдельных функциональных блоков - первичных полнопроходных электромагнитных преобразователей расхода, первичных погружных электромагнитных преобразователей скорости, или средств измерений, внесенных в Федеральный информационный фонд по обеспечению единства измерений, согласно таблицам 1, 2, 3, вычислителей количества теплоты, преобразователей расхода, преобразователей давления, термометров сопротивления, термометров с измерительными преобразователями и электронного блока

Электронный непрерывно блок контролирует исправность первичных преобразователей расхода (скорости), температуры и давления и линий связи с ними. Данные диагностики выводятся на индикатор. Электронный блок может иметь моноблочное или раздельное с первичным преобразователем расхода исполнение. По заказу потребителей может поддерживать цифровые интерфейсы RS-232, RS-485, Ethernet, M-BUS, OPC-сервер, HART, GSM, USB и иметь токовый и/или частотный импульсный выходной сигнал (сигналы), пропорциональный объемному расходу (расходам). Электронный блок может иметь дополнительно интерфейс типа Centronics для подключения принтера или двухпроводную линию связи с гальванической развязкой на оптронах для объединения теплосчетчиков в локальную сеть. В зависимости от заказа электронный блок поставляется в металлическом или пластиковом корпусе.

Таблица 1 - Типы применяемых преобразователей расхода и счетчиков

Tuomina Timbi npimennembix n	эсооризовите.	пен расмода и с тет инков	
Тип расходомера	Регистра-	Тип расходомера	Регистра-
	ционный		ционный
	номер		номер
Преобразователи расчетно- измерительные ТЭКОН-19	24849-13	Счетчики холодной и горячей воды ВМХ и ВМГ	18312-03
Счетчики холодной и горячей воды ВСХ, ВСХд, ВСГ, ВСГд, ВСТ	40607-09	Счетчики холодной и горячей воды турбинные WP-Dynamic	15820-07
Счетчики воды крыльчатые ВСХН, ВСХНд, ВСГНд, ВСТН	55115-13	Счетчики крыльчатые холодной и горячей воды СКБ	26343-08
Счетчики холодной и горячей воды ETW/ETK водоучет	19727-03	Расходомеры-счетчики ВИС.МИР	32718-12

Продолжение таблицы 1

Тип расходомера	Регистра-	Тип расходомера	Регистра-
	ционный		ционный
	номер		номер
Счетчики холодной и горячей	19728-03	Счетчики холодной и горячей воды	48242-11
воды MTK/MNK/MTW водоучет		крыльчатые многоструйные М	
Счетчики холодной и горячей	48241-11	Счетчики холодной и горячей воды	51794-12
воды крыльчатые одноструйные		ВСХ, ВСХд, ВСГ, ВСГд, ВСТ	
ET			

Таблица 2 - Типы применяемых преобразователей давления

Тууг устуучу тордоууд			Darwarmayyyyy
Тип датчика давления	Регистрационный	Тип датчика давления	Регистрационный
	номер		номер
Датчики давления	49083-12	Датчики избыточного	17635-03
MT100	19003 12	давления МИДА-ДИ-12П	17055 05
Преобразователи		Подхими наржания	
давления измерительные	61533-15	Датчики давления	47336-16
MBS1700, MBS1750		малогабаритные КОРУНД	
Преобразователи			
измерительные	44236-10	Датчики давления МС20	27229-11
Сапфир-22МТ			
Датчики давления DMK,	55983-13	Датчики давления MT100M	46325-10
DMP	33703-13	датчики давления WIT 100WI	40323-10
Датчики давления	10275 00	Преобразователи давления	21654 14
Метран-55	18375-08	измерительные АИР-10	31654-14
Датчики давления	32854-13	Преобразователи давления	28313-11
Метран-150	32034-13	измерительные СДВ	20313-11
Преобразователи		_	
давления измерительные	63044-16		
АИР-20/М2			

Таблица 3 - Типы применяемых термопреобразователей сопротивления

Тип термопреобразователя	Регистраци- онный номер	Тип термопреобразователя	Регистраци- онный номер
Комплекты термометров сопротивления из платины технических разностных КТПТР-01; КТПТР-03,06,07,08	46156-10	Комплекты термометров сопротивления из платины технические разностные КТПТР-04, 05, 05/1	39145-08
Термометры сопротивления из платины технические ТПТ-15	39144-08	Термометры сопротивления ТС 005	14763-14
Термометры сопротивления из платины технические ТПТ-1	46155-10	Преобразователи термоэлектрические ТП	61084-15
Термопреобразователи сопротивления ТС-Б	61801-15	Термометры сопротивления ДТС	28354-10
Термопреобразователи сопротивления ТСП-05	14456-13	Комплекты термопреобразователей сопротивления КТСМ, КТСП	38790-13

Продолжение	таблицы	3
-------------	---------	---

Тип термопреобразователя	Регистраци- онный номер	Тип термопреобразователя	Регистраци-
Комплекты термометров сопротивления платиновых КТС-Б	43096-15	Термопреобразователи с унифицированным выходным сигналом ТСМУ 0104, ТСПУ 0104, ТХАУ 0104	29336-05
Комплекты термопреобразователей сопротивления платиновые ТСПТК	21839-12	Термопреобразователи медные технические ТМТ	15422-06

Теплосчетчики обеспечивают измерение, вычисление, индикацию и архивирование следующих параметров:

- среднечасовое и суммарное значение отпущенной (полученной) тепловой энергии по каждому (от одного до шестнадцати) источнику (потребителю) с учетом направления движения теплоносителя (при использовании электромагнитных преобразователей расхода);
- текущие и среднечасовые значения объемного (массового) расхода, температуры и давления теплоносителя по каждому трубопроводу, температуры наружного воздуха;
- суммарные объемы (массы) теплоносителя, протекшие в каждом трубопроводе по каждому направлению раздельно за все время работы (при использовании электромагнитных преобразователей расхода);
- времени наработки и простоя узла учета за каждый астрономический час и за все время работы;
 - текущее астрономическое время и дату;
 - информацию о возникших в процессе работы нештатных ситуациях.

Глубина архивов среднечасовой информации до трех лет. Сохранность информации при выключенном питании не менее 10 лет.

Условное обозначение теплосчетчиков ВИС.Т3

ВИС.Т3
$$\underline{XX}$$
 - \underline{xx} - \underline{x} - $\underline{x$

- 1. Исполнение: ТС теплосчетчик; ВС расходомер-счетчик
- 2. Количество каналов измерения расхода электромагнитными преобразователями погружного типа (0 16)
- 3. Количество каналов измерения расхода электромагнитными преобразователями полнопроходного типа (0 16)
- 4. Количество каналов измерения расхода вихревого типа (0 16)
- 5. Количество каналов измерения расхода тахометрического типа (0 16)
- 6. Количество каналов измерения давления (0 16)
- 7. Количество каналов измерения температуры (0 16)
- 8. Количество тепловых систем или виртуальных приборов (0 -16)
- 9. Наличие интерфейса RS485: 0 нет; 1 есть
- 10. Наличие сменного модуля интерфейса: 0 нет; 1 есть
- 11. Тип корпуса электронного блока: 0- металлический; 1 пластиковый
- 12. Степень защиты корпуса электронного блока: 0 IP40; 1 IP54; 2 IP65; 3 IP68
- 13. Степень защиты корпуса первичного преобразователя:
 - 0 IP65: 1 IP66: 2 IP67: 3 IP68

- 14. Наличие ЖК индикации: 0 нет; 1 есть.
- 15. Максимальная температура рабочей среды: 0 +150°C; 1 +200°C
- 16. Средний срок службы (средняя наработка на отказ), не менее: 0 12 лет (100000 ч);
 - 1 15 лет (120000 ч); 2 25 лет (180000 ч)
- 17. АС абразивостойкое исполнение первичных преобразователей расхода
 - Д приборы с переключением диапазонов измерения расхода
 - E наличие Ethernet
 - Е1 наличие встроенного телефонного модема
 - E2 наличие GSM-модема
 - И приборы с электронным блоком в раздельном исполнении
 - К приборы с дублированием каналов измерения
 - М приборы с электронными блоками, установленными на первичных преобразователях расхода
 - $\rm H\,$ приборы для рабочих сред с электропроводностью ниже $5 \mbox{M}\, 0^{-4}\,$ См/м
 - Н1 приборы для рабочих сред с повышенным осадкосодержанием
 - П приборы погружного типа с 3-мя преобразователями скорости
 - П2 приборы погружного типа с 2-мя преобразователями скорости
 - P(2) работа в системах с изменением направления потока (номер трубопровода, по умолчанию все каналы)
 - С расширенный диапазон эксплуатационных характеристик электронного блока (от минус 50 до плюс 55 °C) со стабилизацией температуры внутри корпуса электронного блока
 - Т наличие токового выходного сигнала о значении расхода
 - У наличие USB интерфейса
 - X наличие HART (только для модификации BC)
 - Ч наличие частотного выходного сигнала о значении расхода
- 18. Диапазон выходных токов (при наличии токового выхода): 0 5 мА;0 20 мА; 4 20 мА.
- 19. Питание: ~220В: =12В: =24 В

Общий вид средства измерений представлен на рисунке 1. Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2 и 3.

Погружное исполнение

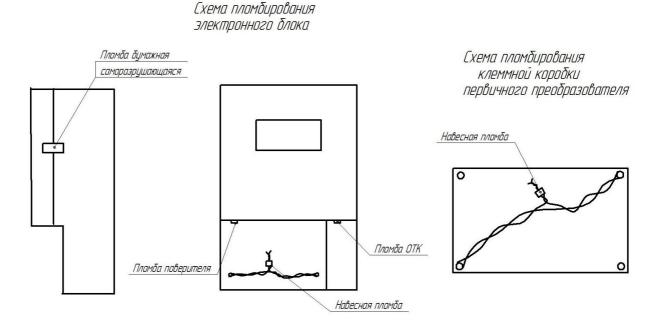


Рисунок 2 - Схема пломбировки от несанкционированного доступа

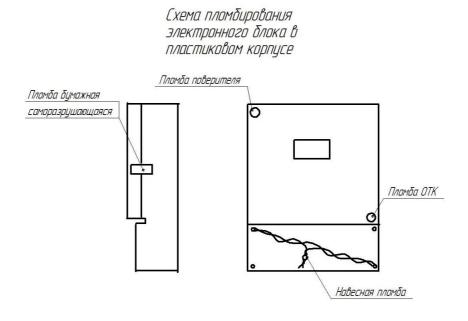


Рисунок 3 - Схема пломбировки от несанкционированного доступа

Программное обеспечение

Встроенное программное обеспечение (ПО) управляет процессом измерения, производит вычисления метрологических параметров, управляет интерфейсными функциями прибора.

Уровень защиты программного обеспечения «Высокий» в соответствии с Р 50.2.077-2014. Конструкция СИ исключает возможность несанкционированного влияния на ПО СИ и измерительную информацию.

Таблица 4

Идентификационные данные	Значение
(признаки)	
Идентификационное	HC-A; HC-F; HC-M; HC-N
наименование ПО	
Номер версии ПО	2.29 - 2.90
Цифровой идентификатор ПО	0-65535
Алгоритм вычисления цифрового	CRC-16
идентификатора ПО	

Метрологические и технические характеристики

Таблица 5 - Метрологические характеристики

Пределы допускаемой относительной погрешности при измерении объемного расхода и объема с использованием	
штатных полнопроходных электромагнитных первичных	
преобразователей расхода, %, в диапазоне расходов:	12
- от Gн до Gп	±2
- от Gп до Gв	$\pm 0.6; \pm 0.2*$
Пределы допускаемой относительной погрешности при измерении объемного расхода и объема с использованием штатных погружных электромагнитных первичных	
преобразователей скорости, (три/два преобразователя), %, в	
диапазоне расходов:	
- от Сн до Сп	$\pm (1,6+0,015\cdot GB/Gi)$
	не более 2,5 (3,0)
- от Gп до Gв	$\pm 1.6/\pm 2.0$
Пределы допускаемой относительной погрешности при	
измерении тепловой энергии в диапазоне расходов от Gп до	
Gв и разности температур ∆t, %	
- полнопроходное исполнение - Ду 2,5 - 1500 мм	
- погружное исполнение - (Ду 300 - 4000 мм)	
1°C £ D t< 2°C;	±6,0 (±7,0)
2°C £ Dt< 10°C;	±4,0 (±5,0)
10°C £ Dt< 20°C;	±2,5 (±3,6)
$20^{\circ}\text{C} \ \text{£ Dt} \le 149^{\circ}\text{C} \ (20^{\circ}\text{C} \ \text{£ Dt} \le 180^{\circ}\text{C})^*$	±2,0 (±3,4)
Пределы допускаемой относительной погрешности при	
измерении тепловой энергии в диапазоне расходов от Gн до Gп, %	
-полнопроходное исполнение -Ду 2,5 - 1500 мм	$\pm (2+4/\Delta t+0.01 GB/G)$
- погружное исполнение - Ду 300 - 4000 мм	$\pm (3+4/\Delta t+0.02GB/G)$
Пределы допускаемой относительной погрешности каналов	±0,1
преобразования электронным блоком частотно-импульсных	,
сигналов при измерении объема, %	
Пределы допускаемой относительной погрешности	$\pm (0.5 + \Delta t min/Dt)$
электронного блока при измерении тепловой энергии, %	,
Пределы допускаемой абсолютной погрешности при измерении	± (0,1+0,001 x)
температуры t, °C, без учета [с учетом] погрешности	$[\pm (0.6+0.004x)]$
термопреобразователей, %	

Продолжение таблицы 5

Пределы	допускаемой	приведен	ной пог	решности	при	
измерении	давления	без	учета	погрешно	ости	± 0.15
преобразов	вателей давлени	ия, %				
Пределы	допускаемой	относ	ительной	погрешно	ости	±0,01
измерения	времени, %					
					•	
*-по спец.	заказу					

Значение наибольшего (максимального) объемного расхода G_B для электромагнитного преобразователя расхода соответствуют средней скорости потока от 1 до 10 м/с, значение переходного (линейного) объемного расхода G_H соответствует 10% от G_B , значение наименьшего (минимального) объемного расхода G_H соответствует G_B/DD , где DD динамический диапазон измерения расхода: DD=250, для полнопроходных первичных преобразователей расхода \mathcal{L}_V от 2,5 до 1500 мм (DD=10, 100, 500, 1000, 2000 по заказу); DD=100 для погружных первичных преобразователей скорости \mathcal{L}_V от 300 до 4000 мм. (DD=25, 50, 250 по заказу).

Таблица 6 - Основные технические характеристики

Tuominga o Genobliste Textim Teekire Aupuk Tepine Tiikii	
Измеряемая среда	Теплофикационная,
	природная вода, питьевая
	вода по ГОСТ Р 51232-98,
	технологические растворы,
	конденсат, хладагенты,
	суспензии, эмульсии,
	электропроводящие жидкости
	с удельной проводимостью от
	3⋊0 ⁻⁶ до 10 См/м.
Диаметры условного прохода полнопроходных	2,5; 4; 6; 10; 15; 20; 25; 32; 40;
электромагнитных первичных преобразователей, мм	50; 65; 80; 100; 150; 200; 250;
	300; 400; 500; 600; 700; 800; 900;
	1000; 1100; 1200; 1300; 1400;
	1500
Диапазон условных диаметров трубопроводов для погружных	
электромагнитных первичных преобразователей, мм	от 300 до 4000
Диапазон температур рабочей среды, °С	
-воды, конденсата, электропроводящей жидкости	от 0 до +150 (от 0 до +200)*
-хладагента	от -50 до +50 (от -50 до +200)*
Диапазон измерений разности температур теплоносителя, °С	от 1 до 149
	(от 1 до 180)*
Максимальное давление рабочей среды, МПа	0,6; 1,0; 1,6; 2,5; 40*
Напряжение питания, В	
-переменный ток	220 +10%
-постоянный ток	12; 24
Частота, Гц.	50±1
Диапазон температур окружающей среды, °С	
-электронного блока	от +5 до +55
	(от -50 до +55)*
парринцого праобразоратаня	от -50 до +55
-первичного преобразователя	01-30 до т33

Продолжение таблицы 6

Диапазон температур хранения и транспортирования, °С	от +5 до +55
Диапазон относительной влажности окружающего	от 5 до 95
воздуха, %	
Выходные сигналы:	
-аналоговый, мА	от 0 до 5
W 75	(от 0 до 20; от 4 до 20)
-частотный, Гц	от 0 до 1000 (от 0 до 10000)
Максимальная потребляемая мощность, ВА, не более	70
Степень защиты	
-электронный блок	IP 40 (IP 65, IP68)*
-первичные преобразователи	IP 65 (IP 67, IP 68)*
Габаритные размеры электронного блока, мм, не более	350 x 380 x 155
Масса электронного блока, кг, не более	8
Средняя наработка на отказ, ч, не менее	100000 (120000; 180000)*
Средний срок службы, лет, не менее	12 (15; 25)*
*-по спец. заказу	

Знак утверждения типа

наносится на титульный лист эксплуатационной документации типографским способом и на левой стороне лицевой панели электронного блока.

Комплектность средства измерений

Таблица 7 - Комплектность средства измерений

Наименование	Обозначение	Кол-во
Теплосчетчик ВИС.Т3		1 шт.
Руководство по эксплуатации	ВАУМ.407312.114 РЭ3	1 242
	ВАУМ.407312.114 РЭ4	1 экз.
Паспорт	ВАУМ.407312.114 ПС3	1 экз.
	ВАУМ.407312.114 ПС4	
Методика поверки	ВАУМ.407312.114МП4	1 экз.

Поверка

осуществляется по документу ВАУМ.407312.114МП4 «Теплосчетчики ВИС.Т3 (погружное исполнение, полнопроходное исполнение). Методика поверки», утвержденному ФГУП «ВНИИМС» $11.04.2016~\Gamma$.

Основные средства поверки:

- эталон единицы температуры 3-го разряда по ГОСТ 8.558-2009 в диапазоне значений от 0 до 100° C;
 - эталон единицы частоты по ГОСТ 8.129-2013 в диапазоне значений от 0,001 до $4\cdot10^4$ Гц;
- установка для поверки расходомеров и счетчиков жидкости ОПУС-01, диапазон расхода от 0,025 до 125 м 3 /ч, с погрешностью $\pm 0,2\%$ при измерении расхода и объема методом сличения, с погрешностью $\pm 0,07\%$ при измерении массы и массового расхода весовым методом, регистрационный № 45746-10;
- установка для поверки расходомеров и счетчиков жидкости ОПУС-02-600, диапазон расхода от 0.25 до 640 м³/ч, с погрешностью $\pm 0.2\%$, регистрационный № 40070-08;

- поверочная имитационная установка ПОТОК-Т, скорость потока от 0 до 10 м/с, с погрешностью $\pm 0,2\%$, регистрационный № 14519-13;
- мегаомметр цифровой Е6-36/1, диапазон измерений от 0 до 10000 Ом, погрешность $\pm 5\%$, регистрационный № 52913-13;0
- мера электрического сопротивления постоянного тока многозначная P3026-1, с погрешностью $\pm 0,002\%$, регистрационный № 9478-91;
- прибор для поверки вольтметров дифференциальный В1-12, источник тока от $1 \cdot 10^{-9}$ до $1 \cdot 10^{-1}$ A, регистрационный № 6013-77;
- имитатор термопреобразователей сопротивления МК 3002-1-100, диапазон воспроизводимых температур от 0 до ± 160 °C, погрешность $\pm 0,005$ %, регистрационный № 18854-99.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке или в п. 8 паспорта.

Сведения о методиках (методах) измерений

приведены в эксплуатационных документах.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам **ВИС.Т3**

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ГОСТ 28723-90 Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ГОСТ Р МЭК 61326-1-2014 Оборудование электрическое для измерения, управления и лабораторного применения. Требования электромагнитной совместимости. Часть 1. Общие требования

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования ТУ 4218-001-45859091-04 Теплосчетчики ВИС.Т. Технические условия

Изготовители

Общество с ограниченной ответственностью «НПО «ТЕПЛОВИЗОР»

(ООО «НПО «ТЕПЛОВИЗОР»)

ИНН 7721302674

Адрес: Рязанский проспект, дом 8а, корпус 1, строение 9, г. Москва, Россия, 109428

Телефон/факс(495)730-47-44 E-mail: mail@teplovizor.ru http://www.teplovizor.ru

Общество с ограниченной ответственностью «Тепловизор Пром»

(ООО «Тепловизор Пром»)

ИНН 7721281336

Адрес: Рязанский проспект, дом 8а, корпус 1, строение 9, г. Москва, Россия, 109428

Телефон/факс(495)730-47-44 E-mail: <u>prom@teplovizor.ru</u> http://www.teplovizor.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Телефон/факс: (495)437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____»____2017 г.