ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 330 кВ Ставрополь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 330 кВ Ставрополь (АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии (Счетчики), вторичные измерительные цепи и технические средства приемапередачи данных;

Второй уровень - информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), систему обеспечения единого времени (СОЕВ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование;

Третий уровень - информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:

- синхронизацию шкалы времени ИВК;
- сбор информации (результаты измерений, журналы событий);
- обработку данных и их архивирование;
- хранение информации в базе данных сервера Центра сбора и обработки данных (ЦСОД) ПАО «ФСК ЕЭС» не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового-рынка электроэнергии (ОРЭМ).

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени на базе приемника GPS; автоматизированных рабочих мест (APM) на базе ПК; каналообразующей аппаратуры; средств связи и передачи данных и специальное программное обеспечение (СПО) (Метроскоп).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ. УСПД автоматически проводит сбор результатов измерений и состояния средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

Коммуникационный сервер опроса ИВК АИИС КУЭ единой национальной (общероссийской) электрической сети (ЕНЭС) (Метроскоп) автоматически опрашивает УСПД ИВКЭ. Опрос УСПД выполняется с помощью выделенного канала (основной канал связи). При отказе основного канала связи опрос УСПД выполняется по резервному каналу связи.

По окончании опроса коммуникационный сервер автоматически производит обработку измерительной информации и передает полученные данные в базу данных (БД) сервера ИВК АИИС КУЭ ЕНЭС (Метроскоп). В сервере БД ИВК АИИС КУЭ ЕНЭС (Метроскоп) информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на сервере БД.

Ежедневно оператор ИВК АИИС КУЭ ЕНЭС (Метроскоп) формирует файл отчета с результатами измерений в формате XML и передает его в программно-аппаратный комплекс (ПАК) АО «АТС» и в АО «СО ЕЭС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ). Устройство синхронизации системного времени обеспечивает автоматическую синхронизацию часов сервера, при превышении порога ±1 с происходит коррекция часов сервера. Синхронизация часов УСПД выполняется УССВ, коррекция проводится при расхождении часов УСПД и УССВ на значение, превышающее ±1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±2 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по оптоволоконной связи или по сети Ethernet, задержками в линиях связи пренебрегаем ввиду малости значений.

Погрешность системного времени не превышает ±5 с.

Журналы событий счетчика электроэнергии отражают время (дату, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии ЕНЭС (Метроскоп) (СПО АИИС КУЭ ЕНЭС (Метроскоп)). СПО АИИС КУЭ ЕНЭС (Метроскоп) используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные СПО АИИС КУЭ ЕНЭС (Метроскоп) установленного в ИВК указаны в таблице 1.

Таблица 1 - Идентификационные данные СПО

Идентификационные данные (признаки)	Значение
1	2
Идентификационное наименование ПО	СПО АИИС КУЭ ЕНЭС (Метроскоп)
Номер версии (идентификационный номер) ПО	Не ниже 1.00
Цифровой идентификатор ПО	D233ED6393702747769A45DE8E67B57E
Алгоритм вычисления цифрового идентификатора	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4, нормированы с учетом СПО.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя.

Уровень защиты - высокий, в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ, а также метрологические и технические характеристики АИИС КУЭ приведены в таблицах 2 - 5.

Таблица 2 - Состав ИК АИИС КУЭ

			Состав ИК АИИС КУЭ				
№ ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик статический трёхфазный переменного тока активной/реактивной энергии	УСПД	Вид электроэнергии	
1	2	3	4	5	6	7	
			ПС 330 кВ Ставропо	ль			
1	ВЛ 110 кВ Ставрополь - ВНИИОК (Л - 236)	ТГФМ-110 II* класс точности 0,5S Ктт=500/1 Рег. № 36672-08	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	A1R-4-AL-C29-T+ класс точности 0,2S/0,5 Рег. № 14555-02		активная реактивная	
2	ВЛ 110 кВ Ставрополь - Восточная (Л - 43)	ТФНД-110М класс точности 0,5 Ктт=1000/1 Рег. № 64839-16	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	EA02RAL-P4B-4W класс точности 0,2S/0,5 Рег. № 16666-07		активная реактивная	
3	ВЛ 110 кВ Ставрополь - Грачевская (Л - 133)	ТГФМ-110 II* класс точности 0,5S Ктт=500/1 Рег. № 36672-08	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	EA02RAL-P4B-4W класс точности 0,2S/0,5 Рег. № 16666-07	RTU-325 Per. № 37288-08	активная реактивная	
4	ВЛ 110 кВ Ставрополь - Константиновская (Л - 134)	ТГФМ-110 II* класс точности 0,5S Ктт=500/1 Рег. № 36672-08	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	А1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-02		активная реактивная	
5	ВЛ 110 кВ Ставрополь - Промкомплекс (Л - 140)	ТФНД-110М класс точности 0,5 Ктт=1000/1 Рег. № 64839-16	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	А1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-02		активная реактивная	

1	2	3	4	5	6	7
6	ВЛ 110 кВ Ставрополь - Промышленная (Л - 135)	ТГФМ-110 II* класс точности 0,5S Ктт=500/1 Рег. № 36672-08	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	А1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-02		активная реактивная
7	ВЛ 110 кВ Ставрополь - Северная (Л - 141)	ТФНД-110М класс точности 0,5 Ктт=1000/1 Рег. № 64839-16	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	EA02RAL-P4B-4W класс точности 0,2S/0,5 Рег. № 16666-97		активная реактивная
8	OMB 110 кВ	ТФНД-110М класс точности 0,5 Ктт=1000/1 Рег. № 64839-16	НКФ-110-57 класс точности 0,5 Ктн=110000/√3/100/√3 Рег. № 14205-94	EA02RAL-P4B-4W класс точности 0,2S/0,5 Рег. № 16666-07		активная реактивная
9	ВЛ 10 кВ Ф - 160	ТВЛМ-10 класс точности 0,5 Ктт=400/5 Рег.№ 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95	RTU-325 Per. № 37288-08	активная реактивная
10	ВЛ 10 кВ Ф - 161	ТВЛМ-10 класс точности 0,5 Ктт=400/5 Рег. № 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная
11	ВЛ 10 кВ Ф - 162	ТЛО-10 класс точности 0,5 Ктт=400/5 Рег. № 25433-08	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	А1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная
12	ВЛ 10 кВ Ф - 163	ТВЛМ-10 класс точности 0,5 Ктт=600/5 Рег. № 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная

тродс	лжение таолицы 2	2	Ι	T		7
1	2	3	4	5	6	7
13	ВЛ 10 кВ Ф - 164	ТЛО-10 класс точности 0,5 Ктт=400/5 Рег. № 25433-08	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег.№ 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная
14	ВЛ 10 кВ Ф - 165	ТВЛМ-10 класс точности 0,5 Ктт=400/5 Рег. № 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	А1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная
15	ВЛ 10 кВ Ф - 166	ТВЛМ-10 класс точности 0,5 Ктт=400/5 Рег. № 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная
16	ВЛ 10 кВ Ф - 167	ТЛО-10 класс точности 0,5 Ктт=600/5 Рег. № 25433-08	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95	RTU-325 Per.	активная реактивная
17	КЛ 10 кВ Ф - 168	ТВЛМ-10 класс точности 0,5 Ктт=400/5 Рег. № 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	А1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95	Nº 37288-08	активная реактивная
18	ВЛ 10 кВ Ф - 170	ТОЛ-10 класс точности 0,5 Ктт=400/5 Рег. № 7069-07	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-T+ класс точности 0,2S/0,5 Рег. № 14555-02		активная реактивная
19	Ф - 171 (ПГ ВЛ 110 кВ)	ТВЛМ-10 класс точности 0,5 Ктт=400/5 Рег. № 1856-63	НАМИТ-10 класс точности 0,5 Ктн=10000/100 Рег. № 16687-07	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная
20	ВАТ - 103 (ввод 10 кВ АТ - 303 ПГ ВЛ 110 кВ)	ТЛО-10 класс точности 0,5S Ктт=1500/5 Рег. № 25433-07	НТМИ-10-66 класс точности 0,5 Ктн=10000/100 Рег. № 831-69	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95		активная реактивная

1	2	3	4	5	6	7
21	ВЛ 330 кВ Ставропольская ГРЭС - Ставрополь (Л - 330 - 17)	ТГФ-330 II класс точности 0,2S Ктт=1000/1 Рег. № 44699-10 ТГФ-330 II класс точности 0,2S Ктт=1000/1 Рег. № 44699-10	НКФ-М-330А класс точности 0,5 Ктн=330000/√3/100/√3 Рег. № 26454-08	A1R-4-AL-C29-Т класс точности 0,2S/0,5 Рег. № 14555-95	RTU-325 Per. № 37288-08	активная реактивная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

		Метрологические характеристики ИК				•	
Номер ИК	Диапазон значений силы тока	ий Основная относительная погрешность ИК $(\pm \delta)$, %		Относительная погрешность ИК в рабочих условиях эксплуатации $(\pm \delta)$, %			
		$\cos \varphi = 1,0$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi =$ 1,0	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$
1	2	3	4	5	6	7	8
1; 4; 6; 20	$\begin{array}{c} 0.01(0.02) I_{H_1} \leq I_1 < \\ 0.05 I_{H_1} \end{array}$	1,8	2,5	4,8	1,9	2,6	4,8
(TT 0 50, TH 0 5.	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,1	1,6	3,0	1,2	1,7	3,0
(TT 0,5S; TH 0,5; Сч 0,2S)	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,9	1,2	2,2	1,0	1,4	2,3
C4 0,23)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,9	1,2	2,2	1,0	1,4	2,3
2; 8	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	1,8	2,8	5,4	1,9	2,9	5,5
	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,1	1,6	2,9	1,2	1,7	3,0
(TT 0,5; TH 0,5; Сч 0,2S)	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,9	1,2	2,2	1,0	1,4	2,3
3	$0.01(0.02) \mathrm{IH}_1 \leq \mathrm{I}_1 < 0.05 \mathrm{IH}_1$	1,8	2,5	4,8	1,9	2,6	4,8
(TT 0 50, TH 0 5.	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,1	1,6	3,0	1,2	1,7	3,0
(TT 0,5S; TH 0,5; Сч 0,2S)	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,9	1,2	2,2	1,0	1,4	2,3
C4 0,23)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,9	1,2	2,2	1,0	1,4	2,3
5; 7; 9 - 19	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,8	2,8	5,4	1,9	2,9	5,5
	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	1,1	1,6	2,9	1,2	1,7	3,0
(TT 0,5; TH 0,5; Сч 0,2S)	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,9	1,2	2,2	1,0	1,4	2,3
21	$\begin{array}{c} 0.01(0.02) I_{H_1} \leq I_1 < \\ 0.05 I_{H_1} \end{array}$	1,1	1,3	2,1	1,3	1,5	2,2
(TT 0,2S; TH 0,5;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,8	1,0	1,7	1,0	1,2	1,8
Сч 0,2S)	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,7	0,9	1,4	0,9	1,1	1,6
C 1 0,25)	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,7	0,9	1,4	0,9	1,1	1,6

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

	Метрологические х		характеристики ИК			
	п	Основная от	носительная	Относительная погрешность ИК в		
Номер ИК	K Диапазон значений силы тока погрешность ИК $(\pm \delta)$, %		<u> </u>			
		$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$	
1	2	3	4	5	6	
1; 4; 6; 20	$\begin{array}{c} 0.01(0.02) I_{H_1} \leq I_1 < \\ 0.05 I_{H_1} \end{array}$	4,1	2,5	4,5	2,9	
(TT 0,5S; TH 0,5; C4 0,5)	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	2,5	1,6	2,7	1,8	
	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,8	1,2	2,0	1,4	
C4 0,3)	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	1,8	1,2	1,9	1,4	

1	2	3	4	5	6
2; 8	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	4,4	2,7	4,6	3,0
	$0,\!2I_{\mathrm{H}_1}\!\leq\!I_1<\!I_{\mathrm{H}_1}$	2,4	1,5	2,8	2,0
(TT 0,5; TH 0,5; Сч 0,5)	$I_{H_1}\!\leq\!I_1\!\leq\!1,\!2I_{H_1}$	1,9	1,2	2,3	1,7
3	$0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$	4,0	2,4	4,2	2,7
(TT 0 50, TH 0 5.	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	2,6	1,8	2,9	2,2
(TT 0,5S; TH 0,5; C4 0,5)	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,9	1,2	2,3	1,7
C4 0,3)	$I_{H_1}\!\leq I_1\!\leq 1,\!2I_{H_1}$	1,9	1,2	2,3	1,7
5; 7; 9 - 19	$0.05 I_{\rm H_1} \leq I_1 < 0.2 I_{\rm H_1}$	4,4	2,6	4,5	2,7
	$0,\!2\mathrm{I}_{\mathrm{H}_1}\!\leq\!I_1\!<\!I_{\mathrm{H}_1}$	2,4	1,5	2,5	1,6
(TT 0,5; TH 0,5; Сч 0,5)	$I_{H_1}\!\leq\!I_1\!\leq\!1,\!2I_{H_1}$	1,8	1,2	1,9	1,4
21	$0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$	2,3	1,6	2,9	2,2
(TT 0,2S; TH 0,5;	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,6	1,2	1,9	1,5
Сч 0,5)	$0,\!2\mathrm{I}_{\mathrm{H}_1}\!\leq\!I_1\!<\!I_{\mathrm{H}_1}$	1,3	1,0	1,5	1,2
C 1 (0,5)	$I_{H_1}\!\leq I_1\!\leq 1,\!2I_{H_1}$	1,3	0,9	1,4	1,2

Примечания

- 1. Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2. Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 10 до плюс 30°C.
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ 30206-94; ГОСТ Р 52323-2005 в части активной электроэнергии и ГОСТ 26035-83; ГОСТ Р 52425-2005 в части реактивной электроэнергии.
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с такими же метрологическими характеристиками, перечисленными в таблице 2.

Таблица 5 - Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Количество измерительных каналов	21
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- коэффициент мощности cosj	0,87
температура окружающей среды °С:	
- для счетчиков активной энергии:	
ΓΟCT P 52323-2005	от +21 до +25
- для счетчиков реактивной энергии:	
ГОСТ 26035-83	от +18 до +22

Продолжение таолицы 3	2
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 5 до 120
- коэффициент мощности	от 0,5 _{инд} до 0,8 _{емк}
диапазон рабочих температур окружающего воздуха, °C:	от о,5 инд до о,о емк
- для TT и TH	от -40 до +40
- для счетчиков	от -40 до +65
- для УСПД	от -10 до +50
Надежность применяемых в АИИС КУЭ компонентов:	01-10 до 130
счетчики электрической энергии Альфа А1R:	
- среднее время наработки на отказ, ч, не менее	120000
- среднее время восстановления работоспособности, ч,	48
не более	70
счетчики электрической энергии ЕвроАльфа:	
- среднее время наработки на отказ, ч, не менее	80000
- среднее время восстановления работоспособности,с,	48
не более	40
УСПД RTU-325:	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	24
сервер:	24
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	1
счетчики электрической энергии:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, лет, не более	5
ИВК:	3
- результаты измерений, состояние объектов и средств	
измерений, лет, не менее	3,5
ИВКЭ:	3,3
- суточные данные о тридцатиминутных приращениях	
электропотребления (выработки) по каждому каналу, суток,	
не менее	35
ne menee	33

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи; в журналах событий счетчика и УСПД фиксируются факты:
 - параметрирования;
 - пропадания напряжения;
 - коррекция времени.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование:

- счетчика;
- промежуточных клеммников вторичных цепей напряжения;

- испытательной коробки;
- УСПД;

наличие защиты на программном уровне:

- пароль на счетчике;
- пароль на УСПД;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Кол-во, шт.
1	2
Трансформатор тока ТГФМ-110 II*	12
Трансформатор тока ТФНД-110М	12
Трансформатор тока ТВЛМ-10	14
Трансформатор тока ТЛО-10	12
Трансформатор тока ТОЛ-10	2
Трансформатор тока ТГФ-330 II	6
Трансформатор напряжения НКФ-110-57	6
Трансформатор напряжения НАМИТ-10	2
Трансформатор напряжения НТМИ-10-66	1
Трансформатор напряжения НКФ-М-330А	3
Счётчики электроэнергии многофункциональные типа АЛЬФА	17
Счётчики электрической энергии многофункциональные	4
ЕвроАльфа	
УСПД типа RTU-325	1
Методика поверки МП 206.1-058-2017	1
Паспорт-формуляр АУВП.411711.ФСК.064.10.ПС-ФО	1

Поверка

осуществляется по документу МП 206.1-058-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 330 кВ Ставрополь. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 28.02.2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- средства измерений по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей».

- средства измерений МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- счетчиков АЛЬФА в соответствии с документом «Многофункциональные счётчики электрической энергии типа АЛЬФА. Методика поверки», утверждённому ВНИИМ им. Д.И. Менделеева
- счетчиков ЕвроАльфа в соответствии с документом «ГСИ Счётчики электрической энергии многофункциональные ЕвроАальфа. Методика поверки», согласованной с ГЦИ СИ ФГУ «Ростест-Москва» в сентябре 2007 г.;
- для УСПД RTU-325 по документу «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки ДЯИМ.466.453.005 МП» утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.:
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %; Рег. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверки.

Сведения о методиках (методах) измерений

приведены в документе: «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 330 кВ Ставрополь». Свидетельство об аттестации методики (методов) измерений АИИС КУЭ RA.RU.311298/003-2017 от 17.01.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии АИИС КУЭ ЕНЭС ПС 330 кВ Ставрополь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Публичное акционерное общество «Федеральная сетевая компания Единой энергетической системы» (ПАО «ФСК ЕЭС»)

ИНН 4716016979

Адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Телефон: +7 (495) 710-93-33 Факс: +7 (495) 710-96-55 Web-сайт: <u>www.fsk-ees.ru</u> E-mail: info@fsk-ees.ru

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «ЭНЕРГОАУДИТКОНТРОЛЬ» (ООО «ИЦ ЭАК»)

ИНН 7733157421

Адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Телефон: +7 (495) 620-08-38 Факс: +7 (495) 620-08-48

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.