ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

GNSS-приемники спутниковые геодезические многочастотные South S680

Назначение средства измерений

GNSS-приемники спутниковые геодезические многочастотные South S680 (далее - приемники) предназначены для определения координат, а так же измерений приращений координат и длин базисных линий.

Описание средства измерений

Принцип действия приемников основан на получении данных от спутников глобальных навигационных систем и их последующей обработке.

Конструктивно приемники выполнены в моноблочном варианте с Bluetooth и Wi-Fi модулями.

На передней панели приемников находятся четыре светоиндикатора: «Питание» - показывает что приемник включен, либо что идет зарядка, «Bluetooth» - показывает что установлено беспроводное соединение по Bluetooth, «Статус» - показывает число отслеживаемых спутников, «Данные» - отображает прием или передачу данных (КИ) или статус записи данных и загорается каждый раз, когда происходит запись данных в файл; в нижней части приемника две функциональные кнопки: кнопка Вкл/Выкл - для включения/выключения приемника, либо запуска режима самодиагностики и кнопка Reset - для перезагрузки приемника.

На задней панели приемников расположен интерфейсный порт:

- mini-USB - разъем для высокоскоростного обмена данными и установки связи между приемником и внешним устройством, в т.ч. через интерфейс Ethernet, а также зарядки встроенного аккумулятора.

Корпус приемников, состоящий из ударопрочного поликарбоната, обеспечивает защиту от внешних воздействий.

Приемники обладают следующими возможностями:

- одновременное использование спутников навигационных систем ГЛОНАСС, GPS, Galileo, BeiDou, SBAS, QZSS;
 - использование технологий подавления многолучевости;
 - использование технологий подавления внутриполосных помех.

Внешний вид приемников с указанием места пломбировки от несанкционированного доступа и места нанесения знака утверждения типа приведен на рисунках 1 и 2.

Рисунок 1 - Общий вид приемников

а - место пломбировки

б - место нанесения наклейки со знаком утверждения типа (нижняя панель)

Рисунок 2 - Внешний вид приемников со стороны нижней панели

Программное обеспечение

Приемники поставляются со встроенным программным обеспечением (далее ПО) «ВD930 firmware». ПО позволяет осуществлять измерительный процесс в полевых условиях. Для управления процессом измерения используется программа: «WebUI (встр. Web-интерфейс)». В комплекте с приемниками (по заказу) поставляется также одна из программ постобработки: «South Total Control» или «South GPS Processor». Эти программы предназначены для высокоточной обработки геодезических измерений, выполненных в режимах относительных и дифференциальных измерений.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные	Значение			
данные (признаки)				
Идентификационное	BD930	WebUI	South Total	South GPS
наименование ПО	firmware		Control	Processor
Номер версии (идентифика-	4.93 и	4.05	1.3	4.5
ционный номер) ПО	выше	4.03	1.5	4.3
Цифровой идентификатор			EBC1EE00BB0250	2C81207D8F7832E4
ПО (контрольная сумма	-	-	0CD8660C3FE664	CA8F8D0DFF2CD1
исполняемого кода)			E9D1	44
Алгоритм вычисления циф-			md5	md5
рового идентификатора ПО	_	_	11103	IIIQS

Метрологически значимая часть ПО приемников и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных изменений.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «Высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

приведены в таблицах 2 и 3.

Таблица 2 - Метрологические характеристики

Наименование характеристи	Значение
Количество каналов	220
Принимаемые сигналы	ГЛОНАСС: L1 C/A, L2 C/A, L3
	GPS: L1 C/A, L2C, L2E, L5
	Galileo: E1, E5A, E5B, E5AltBOC
	BeiDou: B1, B2
	QZSS: L1 C/A, L1 SAIF, L2C, L5
	SBAS (WAAS, MSAS, EGNOS, GA-
	GAN): L1 C/A, L5
Режимы «Статика» и «Быстрая статика»	
Доверительные границы абсолютной	
погрешности измерений длины базиса	
(при доверительной вероятности 0,997)*, мм:	
- в плане	$\pm 3 \cdot (2,5+0,5\cdot 10^{-6}\cdot D)$
- по высоте	$\pm 3\cdot (5,0+0,5\cdot 10^{-6}\cdot D),$
(диапазон длин базисов от 0,07 до 30 км)	где здесь и далее D - измеренная длина
	базиса в миллиметрах

Наименование характеристи	Значение			
Режимы «Кинематика с постобработкой»				
и «Кинематика в реальном времени (RTK)»				
Доверительные границы абсолютной				
погрешности измерений длины базиса				
(при доверительной вероятности 0,997)*, мм:				
- в плане	$\pm 3 \cdot (8+1 \cdot 10^{-6} \cdot D),$ $\pm 3 \cdot (15+1 \cdot 10^{-6} \cdot D)$			
- по высоте	$\pm 3 \cdot (15 + 1 \cdot 10^{-6} \cdot D)$			
(диапазон длин базисов от 0,07 до 30 км)				
Режим «Автономный»				
Пределы допускаемой абсолютной				
погрешности определения координат				
(при доверительной вероятности 0,997)*, мм:				
- в плане	±3600			
- по высоте	±4500			
* Заявленные точностные характеристики достигаются при одновременном приеме				
сигналов всех ГНСС (ГЛОНАСС, GPS, Galileo, BeiDou, SBAS, QZSS)				

Таблица 3 - Технические характеристики

Наименование характеристи	Значение
Напряжение питания постоянного тока, В:	
- внешний источник питания постоянного тока,	$5\pm0,5$
- аккумуляторная батарея	$7,4\pm0,5$
Габаритные размеры (длина ширина высота), мм, не	
более	115´115´40
Диапазон рабочих температур, °С	от -45 до +65
Масса, кг, не более	0,54

Знак утверждения типа

наносится в виде наклейки непосредственно на корпус приемника в специальном месте и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки приведен в таблице 4.

Таблица 4 - Комплект поставки

Наименование	Количество, шт.	
1 GNSS-приемник спутниковый геодезический многочастотный	1	
South S680	1	
2 Кабель Mini USB-2.0	1	
3 Крепление на веху TP-S650	1	
4 Адаптер питания PSAI10R-	1	
5 Упаковочная коробка 050Q	1	
6 Программное обеспечение «South Total Control»	1 (по заказу)	
или «South GPS Processor»		
7 Руководство по эксплуатации	1	

Поверка

осуществляется по документу ГОСТ Р 8.793-2012 «Государственная система обеспечения единства измерений. Аппаратура спутниковая геодезическая. Методика поверки».

Основные средства поверки:

- эталонный пространственный полигон 2-го разряда по МИ 2292-94, абсолютная погрешность полигона (при доверительной вероятности 0.95) при измерении приращений координат в плане ± 30 мм;
- линейные базисы по ГОСТ Р 8.750-11, пределы допускаемой абсолютной погрешности длин линий базиса между геодезическими пунктами $\pm (1\cdot 10^{-6}\cdot D)$ мм, где D длина базиса в миллиметрах;
 - линейка измерительная металлическая 300 мм по ГОСТ 427;
 - рулетка измерительная металлическая 2 м по ГОСТ 7502;
- термогигрометры «ИВА-6Н-КП-Д» по Госреест СИ № 46434-11, пределы допускаемой абсолютной погрешности измерения температуры ±0,3 °C.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемой аппаратуры с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к GNSS-приемникам спутниковым геодезическим многочастотным South S680

ГОСТ Р 53606-2009 «ГНСС. Методы и технологии выполнения геодезических и землеустроительных работ. Метрологическое обеспечение. Основные положения».

ГОСТ Р 8.750-2011 «Государственная система обеспечения единства измерений. Государственная поверочная схема для координатно-временных средств измерений».

Техническая документация фирмы - изготовителя.

Изготовитель

Фирма «SOUTH SURVEYING & MAPPING INSTRUMENT CO., LTD.», Китай

Почтовый адрес: 3/F, Surveying Building (He Tian Building), NO.24-26, Ke Yun Road, Guangzhou 510665, China

Тел./Факс: +86-20-23380891/+86-20-85524889

Заявитель

Общество с ограниченной ответственностью «Геодетика» (ООО «Геодетика») Почтовый адрес: 127411, г. Москва, Дмитровское Шоссе, 157, строение 12 Юридический адрес: 127411, г. Москва, Дмитровское Шоссе, 157, строение 12 ИНН 7713747398

Тел.: 8 (495) 979-03-17, 8 (495) 798-73-99, 8 (926) 710-19-35 info@geodetika.ru

www.geodetika.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»)

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Почтовый адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево

Телефон/факс: (495) 526-63-00

E-mail: office@vniiftri.ru

Аттестат аккредитации $\Phi \Gamma \Psi \Pi$ «ВНИИ $\Phi T P \Pi$ » по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2017 г.