ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Маршрутизаторы каналов связи РиМ 099.03

Назначение средства измерений

Маршрутизаторы каналов связи РиМ 099.03 (далее – МКС) предназначены для измерений времени в шкале времени UTC; измерений интервалов времени; сбора и хранения измерительной информации и данных, полученных от счетчиков электрической энергии и других измерительных компонентов автоматизированных систем (АС) коммерческого и технического учета электроэнергии, для дальнейшей их передачи в систему верхнего уровня АС.

Описание средства измерений

Принцип действия МКС при измерении времени заключается в периодической синхронизации шкалы времени встроенных часов реального времени МКС (ЧРВ) со шкалой времени внешних эталонных часов, а также в автономном хранении синхронизованной шкалы времени. В качестве внешних эталонных часов используются NTP-сервер.

МКС обеспечивают опрос устройств АС; накопление и сохранение в энергонезависимой памяти измерительной информации, данных о маршрутах передачи данных, номерах и типах используемых каналов, журналов событий устройств АС; а также передачу данных по регламенту, по запросу или спорадически на верхний уровень АС. Обмен данными осуществляется по интерфейсам, приведенным в таблице 1.

МКС оснащены резидентными интерфейсами: LAN Ethernet, USB 2.0, двумя независимыми интерфейсами RS-485 (IEC 62056-46 DLMS COSEM, профиль HDLC,) и служебными интерфейсами: SERIAL1, SERIAL2, UPLC.

Назначение интерфейсов МКС:

- резидентный интерфейс LAN Ethernet используется для организации каналов связи МКС с программно-техническими комплексами, в том числе, например ПТК РМС-2150 (Г.р. № 47776-11), образующими верхний уровень АС;
- резидентный интерфейс USB 2.0 используется для подключения внешнего устройства хранения данных;
- резидентные интерфейсы RS-485 используются для подключения устройств AC нижнего уровня счетчиков электрической энергии и коммуникаторов связи.

Служебные интерфейсы предназначены для подключения внешних коммуникаторов (сетевой карты Ethernet, радиомодема RF, PLC коммуникатора, GSM/GPRS модема, приемника сигналов GPS/ГЛОНАСС) различных производителей, в том числе коммуникаторов производства АО «Радио и Микроэлектроника», для реализации самоорганизующейся mesh сети, а также для расширения функциональных возможностей МКС.

Конструктивно МКС выполнены в корпусе, в котором имеется отсек для подключения коммуникаторов к служебным интерфейсам, и отсек для подключения линий связи к резидентным интерфейсам и цепей питания трехфазной сети. Отсеки закрываются крышками и пломбируются. В случае подключения к служебному интерфейсу UPLC внешнего PLC коммуникатора обмен информацией с устройствами нижнего уровня АС осуществляется по трехфазной сети, используемой также для питания МКС.

МКС оснащены разъемом для подключения внешнего резервного источника питания – аккумуляторной батареи.

Таблица 1

Условное МКС	обозначение	, ,	Служебные	Код типа МКС
IVIKC		интерфейсы	интерфейсы	
РиМ 099.03	I AN Etharnat III	LAN Ethernet, USB 2.0,	SERIAL1	
		RS-485-A, RS-485-B	SERIAL2	09903
			UPLC	

Общий вид МКС с указанием мест пломбировки приведен на рисунке 1.

Места установки пломбы энергоснабжающей организации (одно из двух показанных)

Рисунок 1 – Общий вид и схема пломбирования МКС

Программное обеспечение

Встроенное программное обеспечение МКС (ПО) реализует обмен данными с устройствами АС по открытым DLMS/COSEM-совместимым протоколам передачи данных и стандартным внешним интерфейсам.

Измерительная информация, маршруты передачи данных, номера и типы используемых счетчиков электроэнергии и других измерительных компонентов АС, журналы событий, служебная информация сохраняются в базе данных МКС (БД) в энергонезависимой памяти.

Результаты измерений, считанные с измерительных компонентов АС, не подвергаются математической обработке.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014. Идентификационные данные ПО приведены в таблице 2.

Таблица 2

тиолици 2		
Идентификационные данные (признаки)	Значение	
Идентификационное наименование программного обеспечения	/cu/clock_module	
Номер версии (идентификационный номер) программного обеспечения	не присваивается	
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	3e3e8984660e62ec86ab45e7d1080724	
Идентификационное наименование программного обеспечения	/usr/sbin/ntpdate	
Номер версии (идентификационный номер) программного обеспечения	Не присваивается	
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	1338ae3e1f2e3c4a1b72758f024b2bc1	
Идентификационное наименование программного обеспечения	/usr/bin/md5sum	
Номер версии (идентификационный номер) программного обеспечения	Не присваивается	
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	fd83aac61de4f3db4422a3a9372c8326	

Метрологические и технические характеристики

Таблица 3

Характеристика	Значение
1	2
Пределы допускаемых значений поправки часов после	±1,0
выполнения синхронизации, с	
Пределы допускаемых значений хода часов, с/сутки	±1,0
Максимальное количество опрашиваемых приборов	2048
учета (счетчики электрической энергии, интеллектуаль-	
ные приборы учета электроэнергии и т.п.), не менее, штук	
Параметры электрического питания:	
Номинальное напряжение, В	3×230/400
Рабочий диапазон диапазон фазных напряжений, В	от 164 до 264
Номинальная частота, Гц	50
Рабочий диапазон частот, Гц	от 49,5 до 50,5
Активная потребляемая мощность, Вт, не более	20

Продолжение таблицы 3

1	2
Рабочие условия применения	
- рабочий диапазон температур	от -40 до +60
-верхнее значении относительной влажности воздуха	
при температуре окружающего воздуха +35 °C, %	95
при температуре окружающего воздуха +25 °C, %	100
Режим работы	непрерывный
Масса, не более, кг	3
Габариты (высота×ширина×глубина), не более, мм	290×180×95
Степень защиты, обеспечиваемая оболочками (код IP)	
ГОСТ 14254-96	IP 51

МКС соответствуют требованиям технических регламентов Таможенного союза ТР ТС 004/2011 «О безопасности низковольтного оборудования», ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

Соответствие МКС требованиям безопасности и электромагнитной совместимости подтверждено сертификатом соответствия Таможенного союза № ТС RU C-RU.AЯ79.В.01339.

Знак утверждения типа

наносится на титульные листы паспорта и руководства по эксплуатации типографическим способом, а также на корпус МКС методом струйной печати чернилами с ультрафиолетовым отверждением.

Комплектность средства измерений

Таблица 4

Наименование	Обозначение	Количество		
Маршрутизатор каналов связи	РиМ 099.03	1 шт.		
Документация				
Маршрутизатор каналов связи РиМ 099.03. Паспорт	ВНКЛ.426487.044 ПС	1 экз.		
Маршрутизатор каналов связи РиМ 099.03	ВНКЛ 426487.044 РЭ			
Руководство по эксплуатации $^{1)}$, $^{2)}$		1 экз.		
Маршрутизатор каналов связи РиМ 099.03. Методика поверки ²⁾	ВНКЛ 426487.044 ДИ	1 экз.		
Служебные интерфейсы SERIAL1, SERIAL2 для коммуникаторов RF-PLC и GSM. Описание протоколов обмена ²⁾ , ⁴⁾	ВНКЛ.411711.010 ИС	1 экз.		
Программное обеспечение				
Программа-конфигуратор ³⁾ , ⁴⁾	Setting09903.exe	1 шт.		

¹⁾ Поставляется в электронном виде на компакт-диске 1 шт. на групповую упаковку.

²⁾ Поставляется по отдельному заказу.

³⁾ Программа - конфигуратор Setting09903.exe на электронном носителе.

⁴⁾ По запросу организаций, выполняющих разработку оборудования и системных интеграторов.

2017 г.

Поверка

осуществляется по документу ВНКЛ 426487.044 ДИ «Маршрутизаторы каналов связи РиМ 099.03. Методика поверки», утверждённому ФГУП «СНИИМ» 20 февраля 2017 г.

Основные средства поверки:

- NTP серверы, работающие от рабочих шкал Государственного первичного эталона времени, частоты и национальной шкалы времени и вторичных эталонов ВЭТ 1-5 и ВЭТ 1-7;
 - частотомер электронный Ч3-63/1 (рег. № 9084-90).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью

Знак поверки наноситься в соответствующем разделе паспорта в виде оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные И технические документы, **устанавливающие** требования маршрутизаторам каналов связи РиМ 099.03

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ТУ 4200-070-11821941-2015 Маршрутизаторы каналов связи РиМ 099.03. Технические условия

Изготовитель

Акционерное общество «Радио и Микроэлектроника» (АО «РиМ»)

ИНН: 540811390

Адрес: 630082, г. Новосибирск, ул. Дачная, д. 60/10фис 307

Телефон: +7(383) 219 53-13 Факс: +7(383) 219 53-13

E-mail: rim@zao-rim.ru http://zao-rim.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4

Телефон: +7(383) 210-08-14 Факс: +7(383) 210-13-60 E-mail: director@sniim.ru

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2017 г