ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

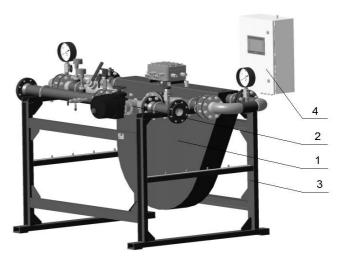
Расходомеры многофазные РМФ

Назначение средства измерений

Расходомеры многофазные РМФ (далее – расходомеры) предназначены для измерения массового расхода и массы сырой нефти, массового расхода и массы сырой нефти без учета воды, объемного расхода и объема свободного нефтяного газа, приведенного к стандартным условиям без предварительной сепарации измеряемой среды.

Описание средства измерений

Расходомеры относятся к классу кориолисовых расходомеров и состоят из двух основных устройств: массового расходомера и виброчастотного плотномера.


Конструктивно расходомер выполнен из двух одинаковых кольцеобразных трубчатых резонаторов, которые образуют с магнитоэлектрическим приводом электромеханическую колебательную систему с распределёнными параметрами, работающую на частоте механического резонанса.

Сырая нефть в расходомере проходит через диспергатор, после чего в виде гетерогенной смеси (смесь жидкой и газовой фаз), протекает через оба резонатора, создавая в них равенство температур, давлений и объёмных концентраций фаз. Массовый расход сырой нефти вычисляется по измерению фазового сдвига между сигналами с датчиков скорости. Плотность сырой нефти вычисляется по периоду сигнала с магнитоэлектрических датчиков скорости на резонансной частоте системы.

Для определения температуры и давления измеряемой среды дополнительно установлены датчики давления и температуры.

Измеренные значения массового расхода, плотности, давления и температуры сырой нефти поступают в шкаф управления, где вычислительный контроллер производит окончательную обработку результатов измерений.

- 1 расходомер многофазный РМФ;
- 2 байпасная линия;
- 3 стойка;
- 4 шкаф управления

Рисунок 1 - Общий вид расходомера многофазного РМФ

Условное обозначение расходомеров в зависимости от максимального измеряемого расхода и рабочего давления:

$$\frac{PM\Phi}{1}$$
 - $\frac{XXX}{2}$ - $\frac{XX}{3}$

где: 1 – тип расходомера;

- 2 максимальный измеряемый расход, т/сут, (100, 200, 400, 800 и 1500)
- 3 рабочее давление, МПа, (4,0 или 6,3)

Программное обеспечение

Данные, полученные при измерениях, обрабатываются с помощью программного обеспечения (далее – Π O), в котором реализованы алгоритмы совместного решения уравнений, содержащих искомые и измеренные физические величины. Π O так же обеспечивает сбор, учет, хранение и передачу информации о количестве извлекаемых из недр нефти и нефтяного газа и их параметров. Шкаф управления состоит из вычислителя (на базе промышленного Π K) и сенсорной ЖК панели.

Идентификационные данные ПО указаны в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	RMF
Номер версии (идентификационный номер) ПО	не ниже 2.0
Цифровой идентификатор ПО	-
(контрольная сумма исполняемого кода)	

Уровень защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения». Изменение конфигурации вычислительного контроллера, программного обеспечения осуществляется только с помощью флэш-карты (СF card) и с использованием файлов специализированного формата, доступ к которым имеется только у обслуживающего персонала.

Пломбирование на предприятии-изготовителе осуществляется путем нанесения пломб или наклеек в места, указанные стрелками (Рисунок 2).

Рисунок 2 - Схема пломбирования вычислительного контроллера

Метрологические и технические характеристики

Таблица 2 - Основные технические характеристики

Наименование характеристики	Значение характеристики
Диапазон измерений массового расхода нефтегазоводяной смеси (сырой нефти), т/сут	от 2 до 1500
Диапазон измерений объемного расхода газа, приведенного к стандартным условиям, ${\rm M}^3/{\rm cyr}$	от 5 до 50000
Напряжение питания от сети переменного тока, В	220^{+22}_{-33}
Потребляемая мощность, Вт, не более	200
Степень защиты, обеспечиваемая оболочкой	IP65

Наименование характеристики	Значение характеристики
Степень взрывозащиты	1Ex d mb IIB T6 Gb
Габаритные размеры (Д х Ш х В), мм, не более	1880 x 690 x 1650
Масса, кг	от 200 до 350
Средняя наработка на отказ, ч, не менее	40000
Средний срок службы, лет, не менее	20

Таблица 3 - Основные метрологические характеристики*

тесянца з основные метрологи теские характеристики		
Наименование характеристики	Значение характеристики	
Пределы допускаемой относительной погрешности измерений	.2.5	
массы и массового расхода сырой нефти, %	±2,5	
Пределы допускаемой относительной погрешности измерений		
массы и массового расхода сырой нефти без учета воды при		
содержании воды (в объемных долях), %:		
- от 0 до 70%	±6	
- свыше 70 до 95%	±15	
- свыше 95%	не нормируется	
Пределы допускаемой относительной погрешности измерений		
объема и объемного расхода свободного нефтяного газа,	±5	
приведенного к стандартным условиям, %		
* Погрешности нормированы для нормальных условий	испытаний на эталонах,	
аттестованных в установленном порядке.		

Таблица 4 - Условия эксплуатации

Наименование характеристики	Значение характеристики
Температура окружающего воздуха, °С	от +5 до +50
Влажность окружающего воздуха, %	от 30 до 80
Атмосферное давление, кПа	от 84 до 106,7

Таблица 5 - Рабочая среда – продукция нефтяных скважин (нефтегазоводяная смесь) с параметрами

Наименование характеристики	Значение характеристики
Рабочее давление, МПа (кгс/см ²), не более	6,3 (63)
Температура рабочей среды, °С	от +5 до +90
Плотность сырой нефти, кг/м ³	от 700 до 1200
Обводненность сырой нефти, %, не более	99
Кинематическая вязкость сырой нефти при 20 °C, сСт, не более	150
Газовый фактор в стандартных условиях, м ³ /т, не более	150

Знак утверждения типа

наносится на титульные листы паспорта и руководства по эксплуатации типографическим методом.

Комплектность средства измерений

Таблица 6 - Комплект поставки расходомеров многофазных РМФ

Наименование	Кол-во	Примечание
Расходомер многофазный РМФ, включая:	1 шт.	Модификация по заказу потребителя
Датчик давления	2 шт.	
Датчик температуры	2 шт.	

Наименование	Кол-во	Примечание
Байпасная линия	1 шт.	
Шкаф управления	1 шт.	
Паспорт РМФ.00.000 ПС	1 шт.	
Руководство по эксплуатации РМФ.00.000 РЭ	1 шт.	
Методика поверки МП 0545-9-2017	1 шт.	

Поверка

осуществляется по документу МП 0545-9-2017 «Инструкция. ГСИ. Расходомеры многофазные РМФ. Методика поверки», утвержденному ФГУП «ВНИИР» 24 марта 2017 г.

Основные средства поверки:

- Государственный первичный специальный эталон единицы массового расхода газожидкостных смесей ГЭТ 195-2011 по ГОСТ 8.637-2013, с диапазоном расходов от 2 до 110 т/ч (для жидкости), от 0,1 до 250 м 3 /ч (для газа), суммарные неопределенности: расхода газа находится в пределах \pm 0,38 %, расхода жидкости находится в пределах \pm 0,46 %;
- рабочие эталоны 1-го разряда по ГОСТ 8.637-2013 с диапазоном воспроизводимого массового расхода газожидкостной смеси, соответствующим рабочему диапазону поверяемой установки, с относительной погрешностью измерения массового расхода жидкой смеси от ± 0.5 до ± 1.0 %, с диапазоном воспроизводимого объемного расхода газа (воздуха), приведенного к стандартным условиям, соответствующим рабочему диапазону поверяемой установки, с относительной погрешностью измерения объемного расхода газа (воздуха) от ± 1.0 % до ± 1.5 %;
- рабочие эталоны 2-го разряда по ГОСТ 8.637-2013 с диапазоном воспроизводимого массового расхода газожидкостной смеси, соответствующим рабочему диапазону поверяемой установки, с относительной погрешностью измерения массового расхода жидкой смеси от \pm 1,5 до \pm 2,0 %, с диапазоном воспроизводимого объемного расхода газа (воздуха), приведенного к стандартным условиям, соответствующим рабочему диапазону поверяемой установки, с относительной погрешностью измерения объемного расхода газа (воздуха) от \pm 3,0 до \pm 5,0 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке установок в виде оттиска поверительного клейма или наклейки.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к расходомерам многофазным РМФ

ГОСТ Р 8.615-2005 ГСИ. Измерения количества извлекаемой из недр нефти и нефтяного газа. Общие метрологические и технические требования

ГОСТ 8.637-2013 ГСИ. Государственная поверочная схема для средств измерений массового расхода многофазных потоков

ТУ 3667-022-49652808-2015 Расходомеры многофазные РМФ. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Завод нефтегазового оборудования «ТЕХНОВЕК» (ООО «Завод НГО «ТЕХНОВЕК»)

ИНН 1828009678

Адрес: 427430, Удмуртская Республика, г. Воткинск, 6 км Камской железной дороги, площадка «Сива»

Телефон/факс: (34145) 6-03-00, (34145) 6-03-01, (34145) 6-03-02

E-mail: info@technovek.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии».

Адрес: 420088, Республика Татарстан, г. Казань, ул. 2-я Азинская, 7А

Телефон: (843) 272-70-62 Факс: (843) 272-00-32 E-mail: vniirpr@bk.ru

Аттестат аккредитации ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310592 от 24.02.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2017 г.