ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы вагонные ВЕСТА

Назначение средства измерений

Весы вагонные ВЕСТА предназначены для:

- повагонного или потележечного статического измерения массы порожних и груженых железнодорожных вагонов с сухими сыпучими, твердыми, а также жидкими грузами;
- повагонного или потележечного измерения массы в движении порожних и груженых вагонов и/или целых поездов с сухими сыпучими, твердыми, а также жидкими грузами.

Описание средства измерений

Принцип действия весов вагонных ВЕСТА основан на преобразовании нагрузки в электрический аналоговый сигнал с последующим его преобразованием в цифровой и выводом результатов измерений на устройства для их отображения и/или регистрации.

Весы вагонные ВЕСТА (далее – весы) состоят из грузоприемного устройства (далее – ГПУ), которое включает в себя от 1 до 4 весовых платформ, установленных на цифровые или аналоговые датчики (далее - датчик), подключаемые посредством устройства обработки аналоговых данных (далее – УОАД) – прибора весоизмерительного ПВ-15 или терминала(ов) со встроенным УОАД к программно-техническому комплексу (далее – ПТК), выполненному на базе персонального компьютера или контроллера.

В весах предусмотрены следующие основные устройства:

- а) при статическом взвешивании:
- полуавтоматическое устройство установки на нуль (ГОСТ OIML R 76-1-2011, п. T.2.7.2.2);
- устройство первоначальной установки нуля (ГОСТ OIML R 76-1-2011, п. Т.2.7.2.4);
- устройство слежения за нулем (ГОСТ OIML R 76-1-2011, п. Т.2.7.3);
- устройство выборки массы тары (ГОСТ OIML R 76-1-2011, п. Т.2.7.4);
- б) при взвешивании в движении:
- устройство первоначальной установки нуля;
- устройство автоматической установки нуля;
- устройство распознавания вагонов;
- устройство отображения результатов взвешивания (массы вагона, состава) и печати;
- устройство автоматического определения положения локомотива и исключение его массы из результатов взвешивания при взвешивании вагонов без расцепки;
- устройство автоматического определения направления движения;
- устройство сигнализации о превышении предела допускаемой скорости движения.

Маркировочная табличка изготавливается из пластины или наклейки и устанавливается на ГПУ весов и/или УОАД. От снятия маркировочной таблички предусмотрена защита несъемным контрольным знаком.

На табличке нанесена следующая маркировка:

- торговая марка изготовителя и его полное наименование;
- обозначение типа весов;
- серийный номер;
- направление движения (если взвешивание возможно только в одном направлении);
- напряжение питания, В;
- частота, Гц;
- диапазон температур, °С;
- идентификатор программного обеспечения;
- знак утверждения типа;
- класс точности по ГОСТ OIML R 76-1-2011;

- класс точности при взвешивании вагонов ГОСТ 8.647-2015;
- класс точности при взвешивании состава из вагонов в целом ГОСТ 8.647-2015;
- максимальная нагрузка в виде: Мах =..... т;
- максимальная нагрузка на платформу в виде: $Max_{\pi} =$ т;
- минимальная нагрузка в виде: Min =..... т;
- минимальная нагрузка на платформу в виде Min_п =..... т;
- цена деления при взвешивании в движении в виде: d =.....кг;
- поверочный интервал весов при статическом взвешивании в виде: е =.....кг;
- максимальная рабочая скорость в виде: v_{max}=.....км/ч;
- минимальная рабочая скорость в виде: v_{min} =.....км/ч

Весы вагонные ВЕСТА выпускаются в следующих модификациях ВЕСТА-[1]([2/3]-[4]-[5]/[6])-([7])/[8][9][10], которые отличаются значением максимальных нагрузок при разных режимах взвешивания, ценой деления, классами точности, количеством интервалов взвешивания, количеством весовых платформ, типом используемых терминалов, УОАД или их отсутствием и типом используемых датчиков. Расшифровка обозначений приведена в таблице 1.

Таблица 1 - Модификации средства измерений

Позиция	Обозначение	Расшифровка
[1]	С; Д; СД	Режим взвешивания: С – только статическое взвешивание; Д – только взвешивание в движении; СД – статическое взвешивание и взвешивание в движении
[2]	25; 50; 60; 75; 100; 120; 150; 200; 250; X – применяется к весам для взвешивания в движении	Максимальная нагрузка в режиме статического взвешивания, т
[3]	25; 50; 100; 120; 150; 200; 250; X – применяется к весам для статического взвешивания	Максимальная нагрузка при взвешивании в движении, т
[4]	25; 50; 100; 120; 150; 200; 250; X – применяется к весам для статического взвешивания	Цена деления при взвешивании в движении, (кг)
[5]	0,5; 1; 2	Классы точности при взвешивании в движении вагона
[6]	0,2; 0,5; 1; 2	Классы точности при взвешивании в движении состава
[7]	1; 2; X –применяется к весам для взвешивания в движении	В режиме статического взвешивания 1 - однодиапазонные; 2 - двухинтервальные
[8]	1; 2; 3; 4	Количество весовых платформ в ГПУ, шт.

Продолжение таблицы 1

1	2	3			
[9]	1; 2; 3; 4; 0	Тип терминала: 1 – ПВ, модификации ПВ-22, ПВ-24 (ООО «ИЦ «АСИ», Россия); 2 – WE, модификация WE2110, WE2111 («Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер 61808-15); 3 – СІ, модификация СІ-6000А («CAS Corporation Ltd.», Корея, регистрационный номер 50968-12) или тип УОАД: 4 –ПВ-15 (ООО «ИЦ «АСИ», Россия); 0 – отсутствует (при использовании цифровых датчиков)			
[10]	1; 2; 3; 4; 5; 6	Тип используемых датчиков: 1 – C16A («Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер 60480-15); 2 – C16i («Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер 60480-15); 3 – TEM-251 (ООО «ИЦ «АСИ»», Россия, регистрационный номер 66556-17); 4 – RTN («Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер 21175-13); 5 – WBK («CAS Corporation Ltd», Корея, регистрационный номер 56685-14); 6 – ZS («Keli Sensing Technology, Co., Ltd», Ningbo регистрационный номер 57674-14)			

Пример записи при заказе весов - ВЕСТА-СД(100/100-50-0,5/0,2)-(1)/143:

Весы для статического взвешивания и взвешивания в движении, максимальная нагрузка 100 т при статическом взвешивании и 100 т при взвешивании в движении, цена деления при взвеши-вании в движении 50 кг; класс точности при взвешивании в движении вагона 0,5, состава 0,2; весы однодиапазонные, с одной весовой платформой; тип используемого УОАД ПВ-15, тип используемых датчиков ТЕМ-251.

Общий вид средства измерений представлен на рисунках 1 и 2.

Схемы пломбировки УОАД и терминалов от несанкционированного доступа представлены на рисунках 3 и 4.

Рисунок 1 – Общий вид ГПУ весов с одной колеей

Рисунок 2 – Общий вид ГПУ весов с двумя колеями

Рисунок 3 – Схема пломбировки УОАД ПВ-15 от несанкционированного доступа

Терминал WE2111

Место для нанесения знака поверки в виде разрушаемой наклейки

Место для нанесения знака поверки в виде пломбы или разрушаемой наклейки

Терминал WE2110

Место для нанесения знака поверки в виде пломбы или разрушаемой наклейки

Терминал CI-6000A

Рисунок 4 – Схемы пломбировки терминалов ПВ-22, ПВ-24, WE2110, WE2111, CI-6000A от несанкционированного доступа

Программное обеспечение

Программное обеспечение (далее – ПО) весов представлено встроенным ПО терминалов и ПТК, используемым в стационарной (закрепленной) аппаратной части с определенными программными средствами и автономным ПО APM «Весы вагонные» или ПО APM «Весы статические».

В терминалах ПВ-22, ПВ-24, WE2110, WE2111, CI-6000A защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя. Идентификационные данные ПО терминалов отображаются на их дисплеях при включении и представлены в таблице 2.

Автономное ПО APM «Весы статические» и ПО APM «Весы вагонные» состоит из метрологически значимой и метрологически незначимой части. Метрологически значимая часть в ПО APM «Весы статические» и ПО APM «Весы вагонные» защищена от преднамеренных и непреднамеренных изменений путём автоматического контроля идентификационных признаков при запуске программы, в том числе с использованием электронного ключа, путём использования системы разграничения прав доступа, использования для информационного обмена защищённого интерфейса, шифрования сохраняемых на диске данных и ведения журнала событий. Идентификационные данные APM «Весы статические» и APM «Весы вагонные» доступны для просмотра в меню «Справка — О программе».

Изменение ПО весов через интерфейс пользователя невозможно. Кроме того, доступ к параметрам юстировки и настройки возможен только при нарушении пломбы.

Автономное ПО позволяет реализовывать следующие функции:

- отображения результатов взвешивания (массы вагона и поезда);
- исключения возможности корректировки результатов взвешивания;
- вычисления значения перегруза или недогруза вагона относительно массы, указанной в перевозочных документах или трафаретного значения его грузоподъемности, вводимого оператором;
- привязки результатов взвешивания к дате и времени, а также их хранение в защищённой локальной базе данных;
- автоматического определения положения локомотива и исключение его массы из результатов взвешивания при взвешивании в движении вагонов без расцепки;
 - простановки отметок о несоблюдении скоростного режима;
 - идентификации типа вагонов по количеству осей при взвешивании в движении;
- автоматического определения направления движения и скорости каждого вагона при взвешивании в движении;
 - определения разности нагрузок по бортам и по тележкам вагона;
 - определения нагрузки от тележки и оси вагона;
 - расчёта и отображения проекции центра масс взвешиваемого вагона;
- формирования и печати стандартных протоколов с результатами взвешивания по различным параметрам запроса;
- диагностики оборудования весов с оперативным информированием о неисправностях.

Нормирование метрологических характеристик проведено с учетом применения ПО.

Конструкция весов исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Таблица 2 - Идентификационные данные ПО терминалов весов

, i i i i i i i i i i i i i i i i i i i					
Идентификационные данные	Значение				
(признаки)	ПВ-22	ПВ-24	WE2110	WE2111	CI-6000A
Идентификационное наименование					CI-6000 series
ПО					firmware
Номер версии (идентификационный	Vt 220X 1)	Vt 400X ¹⁾	P5X 1)	$V 1.0X_{1}^{(1)};$	1.01, 1.02, 1.03
номер) ПО	V t 22011	V t 10021	1 371	P60Y 1)	1.01, 1.02, 1.03
где X принимает значения от 0 до 9, Y принимает значения от A до Z					

где X принимает значения от 0 до 9, Y принимает значения от A до Z

1) - обозначение номера версии метрологически незначимой части ПО

Таблица 3 - Идентификационные данные ПО ПТК весов

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	APM «Весы статические» (StaAll32.exe) Метрологически значимая часть StaticWeight Library.dll	APM «Весы вагонные» (WinVesy.exe). Метрологически значимая часть DynamicWeightLibrary.dll	
Номер версии (идентификационный номер) ПО	1.0.0.11)	1.0.0.11)	
Цифровой идентификатор ПО	C4BF89F0	A28C19E4	
Алгоритм вычисления контрольной суммы исполняемого кода	CRC32	CRC32	
где 1) - обозначение номера версии метр	ологически значимой части П	O	

Метрологические и технические характеристики

1 Статическое взвешивание

Класс точности по ГОСТ OIML R 76-1-2011 средний (III)

Значения максимальной нагрузки (Max), минимальной нагрузки (Min), действительной цены деления (d), поверочного интервала (e), интервалов нагрузки (m), пределов допускаемой погрешности (mpe) и числа поверочных интервалов (n) приведены в таблице 4.

Таблица 4 – Метрологические характеристики

Tuosingu i merposorii teekhe Aupakrepheriikh														
Модификация	Max,	Min,	d = e, кг	m, T	тре, кг	n								
1	2	3	4	5	6	7								
DECTA [11/25/21 [4] [5]/[6])				От 0,2 до 5 включ.	± 5									
BECTA-[1](25/3]-[4]-[5]/[6])-	25	0,2	10	Св. 5 до 20 включ.	± 10	2500								
(1)/[8][9][10]				Св. 20 до 25 включ.	± 15									
DECTA [11/50/21 [41 [51/[61)			20	От 0,4 до 10 включ.	± 10									
BECTA-[1](50/3]-[4]-[5]/[6])-	50	0,4		Св. 10 до 40 включ.	± 20	2500								
(1)/[8][9][10]				Св. 40 до 50 включ.	± 30									
DECTA [11/60/21 [4] [51/[6])				От 0,4 до 10 включ.	± 10									
BECTA-[1](60/3]-[4]-[5]/[6])-	60	60 0,4	60	60	60	0,4	0,4	0,4 20	0,4	0,4	20	Св. 10 до 40 включ.	± 20	3000
(1)/[8][9][10]				Св. 40 до 60 включ.	± 30									
BECTA-[1](75/3]-[4]-[5]/[6])-	75	1	50	От 1 до 25 включ.	± 25	2500								
(1)/[8][9][10]			30	Св. 25 до 75 включ.	± 50	2300								
BECTA-[1](100/3]-[4]-[5]/[6])-	100	1	50	От 1 до 25 включ.	± 25	2000								
(1)/[8][9][10]	100	1	30	Св. 25 до 100 включ.	± 50	_ ∠000								

Продолжение таблицы 4

Продолжение таолицы 4		1				1	
1	2	3	4	5	6	7	
				От 0,4 до 10 включ.	± 10		
BECTA-[1](100/3]-[4]-[5]/[6])-	60	0,4	20	Св. 10 до 40 включ.	± 20	3000	
(2)/[8][9][10]				Св. 40 до 60 включ.	± 30		
	100	60	50	Св. 60 до 100 включ.	± 50	2000	
DECTA [1](120/2] [4] [5]/[6])				От 1 до 25 включ.	± 25		
BECTA-[1](120/3]-[4]-[5]/[6])-	120	1	50	Св. 25 до 100 включ.	± 50	2400	
(1)/[8][9][10]				Св. 100 до 120 включ.	± 75		
				От 0,4 до 10 включ.	± 10		
DECTA (11/120/21 (41 (51/(61)	60	0,4	20	Св. 10 до 40 включ.	± 20	3000	
BECTA-[1](120/3]-[4]-[5]/[6])-				Св. 40 до 60 включ.	± 30		
(2)/[8][9][10]	120	60	50	Св. 60 до 100 включ.	± 50	2400	
	120	60	50	Св. 100 до 120 включ.	± 75	2400	
DECTA [1]/150/21 [4] [5]/[6])				От 1 до 25 включ.	± 25		
BECTA-[1](150/3]-[4]-[5]/[6])-	150	1	50	Св. 25 до 100 включ.	± 50	3000	
(1)/[8][9][10]				Св. 100 до 150 включ.	± 75	1	
	60	0,4	20	От 0,4 до 10 включ.	± 10	3000	
DECTA (11/150/21 (41 (51/64)				Св. 10 до 40 включ.	± 20		
BECTA-[1](150/3]-[4]-[5]/[6])-				Св. 40 до 60 включ.	± 30	1	
(2)/[8][9][10]	150	60	50	Св. 60 до 100 включ.	± 50	2000	
	150	60	50	Св. 100 до 150 включ.	± 75	3000	
BECTA-[1](200/3]-[4]-[5]/[6])-	200	2	100	От 2 до 50 включ.	± 50	2000	
(1)/[8][9][10]	200	2	100	Св. 50 до 200 включ.	± 100	2000	
				От 1 до 10 включ.	± 25		
BECTA-[1](200/3]-[4]-[5]/[6])-	150	1	50	Св. 10 до 40 включ.	± 50	3000	
(2)/[8][9][10]				Св. 40 до 150 включ.	± 75	1	
	200	150	100	Св. 150 до 200 включ.	± 100	2000	
DECTA [11/050/21 [4] [51/52]				От 2 до 50 включ.	± 50		
BECTA-[1](250/3]-[4]-[5]/[6])-	250	2	100	Св. 50 до 200 включ.	± 100	2500	
(1)/[8][9][10]				Св. 200 до 250 включ.	± 150		
				От 1 до 10 включ.	± 25		
DECTA (11/050/01 (41 (52/53)	150	1	50	Св. 10 до 40 включ.	± 50	3000	
BECTA-[1](250/3]-[4]-[5]/[6])-				Св. 40 до 150 включ.	± 75	1	
(2)/[8][9][10]	250	150	100	Св. 150 до 200 включ.	± 100	2500	
	250	250 150		Св. 200 до 250 включ.	± 150	2500	
		<u> </u>	<u> </u>			1	

Пределы допускаемой погрешности весов в эксплуатации равны удвоенному значению пределов допускаемой погрешности при первичной поверке (mpe), указанных в таблице 4.

Пределы допускаемой погрешности, после выборки массы тары соответствуют пределам допускаемой погрешности для массы нетто при любом значении массы тары.

Таблица 5 - Метрологические характеристики

Наименование характеристики	Значение
1	2
Класс точности	III (средний)
Пределы допускаемой погрешности устройства установки на нуль	±0,25e
Диапазон уравновешивания тары	100 % Max
Диапазон выборки массы тары (Т-), % от Мах	от 0 до 100
Показания индикации массы, не более	Max+9e

Продолжение таблицы 5

1	2
Диапазон установки на нуль и слежения за нулём (суммарный), % от Max, не более	4
Диапазон первоначальной установки нуля, % от Мах, не более	20

2 Взвешивание в движении

Значения максимальной массы вагона, максимальной нагрузки (Max), максимальной нагрузки на платформу (Max $_{\scriptscriptstyle \Pi}$), минимальной массы вагона, минимальной нагрузки (Min), минимальной нагрузки на платформу (Min $_{\scriptscriptstyle \Pi}$) по ГОСТ 8.647 представлены в таблицах 6 и 7.

Таблица 6 – Нагрузки весов с одной весовой платформой

Модификация	Максимальная масса вагона, Мах, Мах, т	Минимальная масса вагона, Min, Min, τ
BECTA-[1]([2]/25-[4]-[5]/[6])-[7]/[8][9][10]	25	2
BECTA-[1]([2]/50-[4]-[5]/[6])-[7]/[8][9][10]	50	4
BECTA-[1]([2]/100-[4]-[5]/[6])-[7]/[8][9][10]	100	16
BECTA-[1]([2]/120-[4]-[5]/[6])-[7]/[8][9][10]	120	16
BECTA-[1]([2]/150-[4]-[5]/[6])-[7]/[8][9][10]	150	16
BECTA-[1]([2]/200-[4]-[5]/[6])-[7]/[8][9][10]	200	16
BECTA-[1]([2]/250-[4]-[5]/[6])-[7]/[8][9][10]	250	16

Таблица 7 – Нагрузки весов с несколькими весовыми платформами и нагрузка на весовую платформу

Модификация	Максимальная масса вагона, Мах, т	Махп, т	Минимальная масса вагона, т	Min, T	Міп, т
BECTA-[1]([2]/25-[4]-[5]/[6])- [7]/[8][9][10]	25	15	2	1	1
BECTA-[1]([2]/50-[4]-[5]/[6])- [7]/[8][9][10]	50	25	4	2	1
BECTA-[1]([2]/100-[4]-[5]/[6])- [7]/[8][9][10]	100	50	16	8	4
BECTA-[1]([2]/120-[4]-[5]/[6])- [7]/[8][9][10]	120	60	16	8	4
BECTA-[1]([2]/150-[4]-[5]/[6])- [7]/[8][9][10]	150	75	16	8	4
BECTA-[1]([2]/200-[4]-[5]/[6])- [7]/[8][9][10]	200	100	16	8	4
BECTA-[1]([2]/250-[4]-[5]/[6])- [7]/[8][9][10]	250	125	16	8	4

Классы точности весов ГОСТ 8.647-2015 при взвешивании в движении вагона и составов при различных максимальных нагрузках (Max) представлены в таблице 8.

Таблица 8 - Классы точности весов при взвешивании в движении вагона и состава

Класс точности при взвешивании в	Мах, т					
движении	25; 50		100; 120; 150; 200; 250			
Вагона	1	2	0,5	1	2	
Состава	0,5; 1	1; 2	0,2; 0,5	0,2; 0,5; 1	1; 2	

Пределы допускаемой погрешности весов при взвешивании в движении вагона при первичной поверке, в зависимости от класса точности по ГОСТ 8.647-2015 и диапазона взвешивания приведены в таблице 9.

Таблица 9 - Пределы допускаемой погрешности весов при взвешивании в движении вагона

	Пределы допускаемой погрешности в диапазоне				
Класс точности	от Міп до 35 % Мах включ.,	св. 35 % Мах,			
	% от 35 % Мах	% от измеряемой массы			
0,5	± 0,25	± 0,25			
1	± 0,50	± 0,50			
2	± 1,00	± 1,00			

Пределы допускаемой погрешности в эксплуатации соответствуют удвоенным значениям, приведенным в таблице 9.

При взвешивании вагона в составе без расцепки при первичной поверке не более чем 10 % полученных значений погрешности весов могут превышать пределы, приведенные в таблице 9, но не должны превышать пределы допускаемой погрешности в эксплуатации.

Пределы допускаемой погрешности весов при взвешивании в движении состава из вагонов при первичной поверке или калибровке, в зависимости от класса точности по ГОСТ 8.647-2015 и диапазона взвешивания приведены в таблице 10.

Таблица 10 - Пределы допускаемой погрешности весов при взвешивании в движении состава

	Пределы допускаемой погрешности в диапазоне		
Класс точности	от Міп∙п до 35 % Мах∙п включ.,	св. 35 % Max·n,	
	% от 35 % Max·n	% от измеряемой массы	
0,2	± 0.10	± 0,10	
0,5	$\pm 0,25$	± 0,25	
1	$\pm 0,50$	± 0,50	
2	± 1,00	± 1,00	
где n – количество контрольных вагонов в составе в соответствии с ГОСТ 8. 647-2015			

Цена деления (d) для классов точности весов с одной или более весовыми платформами приведена в таблицах 11 и 12.

Таблица 11 - Цена деления для классов точности весов с одной весовой платформой

Максимальная		Класс точности			
масса вагона,	0,5	1	2		
Max , Max_{Π} , т		Цена деления (d), кг			
25	-	20; 50	50		
50	-	50	100		
100	50	100	200		
120	50	100	200		
150	100	200	500		
200	100	200	500		
250	100	200	500		

Таблица 12 - Цена деления для классов точности весов с несколькими весовыми платформами

		Класс точности		
Max_{Π} , T	0,5	1	2	
		Цена деления (d), кг		
15	-	20; 50	50	
25	-	50	50	
50	50	50	100	
60	50	50	100	
75	50	100	200	
100	50	100	200	
125	50	100	500	

Таблица 13 - Основные технические характеристики			
Наименование характеристики	Значение		
Диапазон рабочих температур грузоприемного устройства, °C:			
- с датчиками С16А, С16і	от -50 до +50		
- с датчиками TEM-251, WBK	от -40 до +50		
- с датчиками RTN	от -30 до +50		
- с датчиками ZS	от -10 до +40		
Диапазон рабочих температур УОАД, °С	от -50 до +50		
Диапазон рабочих температур терминалов, °С	от -10 до +40		
Диапазон рабочих температур ПТК, °С:			
- с обычным температурным диапазоном	от 10 до 40		
- с особым температурным диапазоном	от -50 до +50		
Максимальная рабочая скорость (V _{max}), км/ч	12		
Минимальная рабочая скорость (V_{min}), км/ч	1		
Максимальная скорость проезда, км/ч	15		
Направление движения при взвешивании	одностороннее/двухстороннее		
Максимальное количество вагонов в составе nw _{max} , ед	не ограничено		
Минимальное количество вагонов в составе nw _{min} , ед	1		
Потребляемая мощность, ВА, не более	1000		
Параметры электрического питания:			
- напряжение переменного тока, В	от 187 до 242		
- частота переменного тока, Гц	50 ± 1		
Габаритные размеры ГПУ, мм, не более			
- высота	2000		
- ширина	5000		
- длина	32000		
Масса ГПУ, т, не более	40		
Средний срок службы, лет, не менее	15		
Средняя наработка на отказ, ч	20000		

Знак утверждения типа

наносится на маркировочную табличку, расположенную на ГПУ, а также на титульные листы эксплуатационной документации.

Комплектность средства измерений

Таблица 14 - Комплектность средства измерений

Наименование	Обозначение	Количество
Весы вагонные ВЕСТА	По заказу	1 шт.
Руководство по эксплуатации	УФГИ.404522.006 РЭ	1 экз.
Паспорт	УФГИ.404522.006 ПС	1 экз.

Поверка

осуществляется при статическом взвешивании по ГОСТ OIML R 76-1–2011 «ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания» (приложение ДА. Методика поверки весов);

при взвешивании в движении по ГОСТ 8.647-2015 «ГСИ. Весы вагонные автоматические. Часть 1. Метрологические и технические требования. Методы испытаний» (приложение А. Методика поверки вагонных автоматических весов).

Основные средства поверки:

- рабочий эталон единицы массы 4-го разряда по ГОСТ 8.021-2015 «ГСИ. Государственная поверочная схема для средств измерений массы» (гири класса точности M_1 и $M_{1\text{-}2}$ по ГОСТ OIML R 111-1-2009 «ГСИ. Гири классов E_1 , E_2 , F_1 , F_2 , M_1 , $M_{1\text{-}2}$, M_2 , $M_{2\text{-}3}$ и M_3 . Часть 1. Метрологические и технические требования»).
- контрольные весы и контрольные вагоны, соответствующие требованиям, изложенным в ГОСТ 8.647-2015 «ГСИ. Весы вагонные автоматические. Часть 1. Метрологические и технические требования. Методы испытаний».

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и на пломбы, как показано на рисунках 3 и 4.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам вагонным ВЕСТА

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 8.647-2015 Весы вагонные автоматические. Часть 1. Метрологические и технические требования. Методы испытаний

ГОСТ 8.021-2015 ГСИ. Государственная поверочная схема для средств измерений массы

ТУ 4274-029-10897043-2016 «Весы вагонные ВЕСТА»

Изготовитель

Общество с ограниченной ответственностью «Инженерный центр «АСИ»

(ООО «ИЦ «АСИ») ИНН 4207011969

Адрес: 650000, Россия, г. Кемерово, ул. Кузбасская, 31

Телефон (факс): (384-2) 36-61-49

Web-сайт: <u>www.icasi.ru</u> E-mail: office@icasi.ru

Испытательный центр

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, Россия, г. Москва, Волоколамское шоссе, д.88, стр.8

Телефон (факс): (495) 491-78-12

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313 от 09.10.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____» _____2017 г.