ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы мониторинга состояния основного и вспомогательного оборудования «ГЭС-3000»

Назначение средства измерений

Системы мониторинга состояния основного и вспомогательного оборудования «ГЭС-3000» (далее - системы) предназначены для измерений напряжения и силы переменного тока, относительного перемещения и зазора (осевого сдвига), параметров вибрации (виброускорения, виброскорости и виброперемещения), амплитуды ударных импульсов, частоты вращения, температуры, а также для регистрации и отображения результатов измерений и расчетных величин.

Описание средства измерений

Принцип действия систем основан на преобразовании измеряемых величин первичными измерительными преобразователями (датчиками) в электрические сигналы, их согласовании (усилении или ослаблении) в устройствах согласования и преобразования сигналов УПС (при необходимости), измерении с помощью блоков вычислительных параметров выходных электрических сигналов датчиков, вычислении по известным градуировочным характеристикам значений измеряемых величин, передаче измерительной информации посредством серверного и сетевого оборудования по каналам связи на автоматизированные рабочие места, дальнейшей обработке, регистрации и выдаче результатов измерений и расчетов на внешние устройства в виде, удобном для пользователей.

Системы являются многофункциональными двухуровневыми системами сбора и обработки данных, нижний уровень которых состоит из подсистем, измерительные каналы которых формируются из средств измерений утвержденного типа (датчиков и контроллеров), а верхний уровень включает сервер комплексного мониторинга (СКМ), технологическое сетевое оборудование агрегатного уровня (ТСА), технологическое сетевое оборудование цехового уровня (ТСЦ) и автоматизированные рабочие места механика (АРМ-М) и диагноста (АРМ-Д). Системы применяются для вибромониторинга (виброзащиты) промышленных объектов, обнаружения дефектов подшипников качения и мониторинга технического состояния электроприводов.

В состав базовой конфигурации систем входят следующие подсистемы:

- подсистемы виброзащиты ПВЗ;
- подсистемы вибромониторинга ПВМ;
- подсистемы мониторинга ударных импульсов ПДМИ;
- подсистемы мониторинга электрических параметров ПДЭ;
- подсистемы контроля теплотехнических параметров ПМТП.

Измерительные каналы подсистем ПВЗ (ПВМ) включают блок вычислительный БВЗ (БВВ) на базе контроллера программируемого «VBR.C1» (рег. № 66150-16) и датчики соответствующих величин:

- для измерений размаха относительного перемещения и зазора (осевого сдвига): преобразователи линейных перемещений СИЭЛ-1662, СИЭЛ-1663 (рег. № 48506-11) и преобразователи перемещений типа ВП (рег. № 41665-09);
- для измерений параметров вибрации: вибропреобразователи «ЭА616» (рег. № 65910-16); вибропреобразователи МВ-45Э (рег. № 63496-16); вибропреобразователи МВ-44 (рег. № 21349-06), МВ-45 (рег. № 25484-08) и МВ-46 (рег. № 34908-07) с блоками УПС блоки согласующие БС-16 (рег. № 45028-10), БС-16-11М (рег. № 65538-16);
- для измерений частоты вращения: преобразователи линейных перемещений СИЭЛ-1664 (рег. № 48506-11) и преобразователи перемещений типа ВП.

Измерительные каналы подсистемы ПДМИ включают блок вычислительный БВУИ на базе аппаратуры для мониторинга Intellinova (рег. № 64244-16) и датчики ударных импульсов 42011 (рег. № 63521-16).

Измерительные каналы подсистемы ПДЭ включают блок вычислительный БВЭ на базе контроллера программируемого «VBR.C1» и трансформаторы тока типа T-0,66 (рег. № 52667-13, 22656-07).

Измерительные каналы подсистемы ПМТП включают блок вычислительный БВТ на базе контроллера программируемого «VBR.C1» и датчики температуры: термопреобразователи сопротивления TC-1388 (рег. № 561352-15) и преобразователи термоэлектрические $T\Pi$ -2388, $T\Pi$ -2187 (рег. № 61084-15).

Измерительные каналы могут комплектоваться и другими датчиками утвержденного типа, при применении которых удовлетворяются метрологические характеристики, указанные в настояшем описании типа.

Типовая структурная схема систем представлена на рисунке 1.

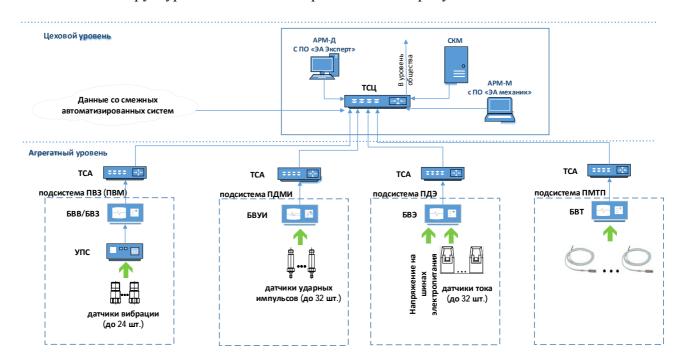


Рисунок 1 – Типовая структурная схема систем

Конструктивно системы представляют собой комплект датчиков, размещаемых на объектах контроля; блоки вычислительные БВВ, БВЗ, БВУИ, БВЭ, БВТ, представляющие собой шкафы электротехнические с установленными в них контроллерами, блоками УПС и вспомогательным оборудованием (барьеры искрозащиты, контроллеры интерфейсов передачи данных, источники питания, коммутаторы и другое технологическое оборудование); комплект сетевого и вычислительного оборудования, линии связи. Применяемые для выпуска систем шкафы могут быть в напольном или настенном вариантах исполнения. Системы выпускаются в модификациях, отличающихся типами и количеством входящих в их состав подсистем, и имеющих следующие обозначения:

«ΓЭC-3000» 4252-002-23157615-U.X.Y.Z.W,

где «U» — количество подсистем ПВЗ, «X» — количество подсистем ПВМ, «Y» — количество подсистем ПДМИ, «Z» — количество подсистем ПДЭ, «W» — количество подсистем ПМТП.

Пример обозначения: «Система мониторинга состояния основного и вспомогательного оборудования «ГЭС-3000» 4252-002-23157615-1.3.7.2.1» - система в составе: одна подсистема ПВЗ, три подсистемы ПВМ, семь подсистем ПДМИ, две подсистемы ПДЭ, одна подсистема ПМТП.

Внешний вид составных частей систем и схемы пломбировки от несанкционированного доступа приведены на рисунках 1 - 4.

Места пломбировки от несанкционированного доступа составных частей системы предусмотрены на болтах крепления боковых панелей системного блока ПЭВМ, на дверцах электротехнических шкафов, закрытых специальными замками, запираемыми ключами, а также на узлах крепления датчиков к объектам контроля в соответствии с их эксплуатационной документацией.

Места пломбировки шкафов

Рисунок 1 – Общий вид шкафов электротехнических и схема пломбировки

Рисунок 2 - Общий вид шкафа электротехнического со снятой дверцей

Рисунок 3 - Общий вид АРМ-Д (АРМ-М)

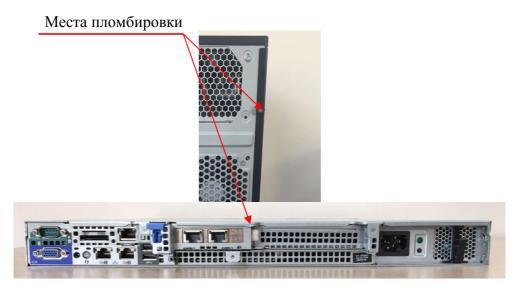


Рисунок 4 – Место пломбировки ПЭВМ АРМ-М (АРМ-Д) и СКМ

Программное обеспечение

Система работает под управлением программного обеспечения (ПО), которое выполняет следующие функции:

- считывание измерительной информации;
- передачу измерительной информации ПО верхнего уровня.

Метрологически значимая часть ПО представляет собой исполняемый файл EnergoApplication.exe. и встроенное ПО FSS, которое может быть изменено только в заводских условиях.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	Значение
Идентификационное наименование ПО	EnergoApplication.exe	FSS
Номер версии ПО (идентификационный код)	16.0.0	2016.002
Цифровой идентификатор ПО	69702c94	-
Алгоритм вычисления цифрового идентификатора ПО	CRC32	-

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение	
Подсистемы виброзащиты ПВЗ (подсистемы вибромониторинга ПВМ)		
Диапазон рабочих частот при измерении параметров вибрации (виброускорения, виброскорости, виброперемещения), Гц	от 2 до 1000	
Диапазон измерений СКЗ виброускорения, м/c ²	от 0,5 до 100	
Диапазон измерений СКЗ виброскорости, мм/с	от 0,5 до 100	
Диапазон измерений СКЗ виброперемещения, мкм	от 5 до 500	
Пределы допускаемой основной относительной погрешности измерений параметров вибрации (виброускорения, виброскорости, виброперемещения), %:		
в диапазоне частот от 10 до 1000 Гц	±10	
в диапазоне частот от 2 до 1000 Гц	±12	
Количество каналов измерений параметров вибрации, не более	24	

Продолжение таблицы 2

продолжение гаолицы 2			
Диапазоны измерений размаха относительного перемещения (пик-пик) в диапазоне частот от 10 до 1000 Гц, мкм	от 10 до 160 от 20 до 250 от 20 до 320 от 20 до 500		
Пределы допускаемой основной относительной погрешности измерений размаха относительного перемещения, %	±12		
Количество каналов измерений размаха относительного виброперемещения, не более	24		
Диапазоны измерений зазора (осевого сдвига), мм	от 0,3 до 2,5 от 0,5 до 4,5		
Пределы допускаемой основной относительной погрешности измерений зазора (осевого сдвига), %	±8		
Количество каналов измерений зазора (осевого сдвига), не более	24		
Диапазон измерений частоты вращения, Гц	от 10 до 500		
Пределы допускаемой основной относительной погрешности измерений частоты вращения, %	±0,1		
Количество каналов измерений частоты вращения, не более	6		
Подсистемы мониторинга ударных импульсов ПДМИ	Ī		
Диапазон измерений амплитуды ударных импульсов, д \overline{b} относительно 100 мм/c^2	от -19 до 80		
Предел допускаемой основной относительной погрешности измерений амплитуды ударных импульсов, дБ	±4		
Количество каналов измерений амплитуды ударных импульсов, не более	32		
Подсистемы мониторинга электрических параметров П,	ЛЭ		
Диапазон измерений СКЗ напряжения переменного тока (канал- нейтраль), В	от 0 до 250		
Пределы допускаемой основной приведенной (к ВП) погрешности измерений СКЗ напряжения переменного тока, %	±0,4		
Количество каналов измерений СКЗ напряжения переменного тока, не более	24		
Диапазоны измерений СКЗ силы переменного тока, А	от 0 до 50 от 51 до 250 от 251 до 1000		
Пределы допускаемой основной приведенной (к ВП) погрешности измерения СКЗ силы переменного тока, %	±3		
Количество каналов измерений СКЗ силы переменного тока, не более	24		
Подсистемы контроля теплотехнических параметров ПМ	ИТП		
Диапазон измерения температуры, °С	от -50 до +200		
Пределы допускаемой основной приведенной (к ВП) погрешности измерений температуры, %	±2,0		
Количество каналов измерений температуры, не более	32		
Примечание: Пределы допускаемых дополнительных погрешностей измерительных каналов подсистем, вызванных изменением температуры окружающего воздуха от нормальной до любой температуры (в пределах рабочего диапазона) на каждые 10 °C изменения			
температуры, не более 0,5 предела допускаемой основной погрешности.			

Таблица 3 – Основные технические характеристики

1аолица 3 – Основные технические характеристики	n
Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	220±22
- частота переменного тока	50±0,5
Максимальная потребляемая мощность, В А, не более:	
- подсистемы ПВМ, ПВЗ, ПДМИ, ПДЭ, ПМТП	200
- АРМ-М, АРМ-Д	600
- сервер СКМ	1500
Габаритные размеры подсистем (длина×ширина×высота), мм, не более:	
- блоки БВВ, БВЗ, БВЭ, БВТ, БВУИ:	
шкаф настенного исполнения	400×500×800
шкаф напольного исполнения	800×800×2200
- АРМ-М, АРМ-Д	1200×737×526
- сервер СКМ (шкаф напольного исполнения)	600×800×2200
Масса, кг, не более:	
- блоки БВВ, БВЗ, БВЭ, БВТ, БВУИ:	
шкаф настенного исполнения	60
шкаф напольного исполнения	150
- АРМ-М, АРМ-Д	49
- сервер СКМ (шкаф напольного исполнения)	200
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С:	
для блоков БВВ, БВЗ, БВТ	от -20 до +55
для блоков БВЭ	от -40 до +55
для блоков БВУИ	от 0 до +60
для АРМ-М, АРМ-Д, СКМ	от +5 до +35
- относительная влажность воздуха при температуре 25 °C, %, не более:	
для блоков БВВ, БВЗ, БВТ	80
для блоков БВЭ	95
для блоков БВУИ	90
для АРМ-М, АРМ-Д, СКМ	80
- атмосферное давление, кПа	от 86 до 106
Степень защиты корпусов по ГОСТ 14524, не ниже:	
- блоки БВВ, БВЗ, БВЭ, БВТ, БВУИ	IP20
- АРМ-М, АРМ-Д, СКМ	IP20
	<u> </u>

Знак утверждения типа

наносится на титульные листы эксплуатационной документации типографским способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Количество
Подсистема ПДЭ:	1 шт.*
Блок вычислительный подсистемы электропараметров БВЭ	1 шт.
Датчик (измерительный трансформатор) тока	до 24 шт.
Групповой ЗИП (один комплект на группу до 6 подсистем)	1 шт.
Подсистема ПДМИ:	1 шт.*
Блок вычислительный сигналов ударных импульсов БВУИ	1 шт.
Датчик ударных импульсов	до 32 шт.

Продолжение таблицы 4

Групповой ЗИП (один комплект на группу до 6 подсистем)	1 шт.
Подсистема ПВМ (ПВЗ):	1 шт.*
Блок вычислительный сигналов вибрации БВВ (блок вычислительный виброзащиты БВЗ)	1 шт.
Устройство преобразования усиления сигналов УПС	2 шт.
Датчик абсолютной вибрации	до 24 шт.
Датчик относительной вибрации и осевого сдвига	до 24 шт.
Датчик частоты вращения	до 6 шт.
Групповой ЗИП (один комплект на группу до 6 подсистем)	1 шт.
Подсистема ПМТП:	1 шт.*
Блок вычислительный температурных параметров БВТ	1 шт.
Датчик температуры	до 32 шт.
Групповой ЗИП (один комплект на группу до 6 подсистем)	1 шт.
Компьютерное оборудование:	
Компьютерное оборудование АРМ (АРМ-М, АРМ-Д)	1 компл.*
Сервер СКМ	1 компл.*
Сетевое оборудование агрегатного уровня ТСА	1 компл.*
Сетевое оборудование цехового уровня ТСЦ	1 компл.*
Эксплуатационная документация:	
Руководство по эксплуатации 4252-002-23157615.РЭ	1 экз.
Формуляр 4252-002-23157615.ФО	1 экз.
Методика поверки 4252-002-23157615.МП	1 экз.
Паспорта на все первичные преобразователи (датчики)	согласно ФО
* Количество и исполнение определяется заказанной спецификацией и ук	азано в формуляре на
систему.	

Поверка

осуществляется по документу 4252-002-23157615.МП «Инструкция. Системы мониторинга состояния основного и вспомогательного оборудования «ГЭС-3000». Методика поверки», утвержденному ООО «АСК Экспресс» 27 июня 2017 г.

Основные средства поверки:

- генератор сигналов низкочастотный Г3-136 (рег. № 44849-10);
- установка вибрационная поверочная 2-го разряда по ГОСТ Р 8.800-2012.
- установка калибровочная CU-01 (рег. № 36177-07);
- устройство для поверки преобразователей вихретоковых в статическом режиме УПД (рег. № 41293-09);
 - калибратор многофункциональный Calibro 140 (рег. № 39949-08);
 - магазин электрических сопротивлений Р4834 (рег. № 11326-88);
- система поверки термопреобразователей автоматизированная АСПТ (рег. № 19973-06);
 - мультиметр цифровой 34410А (рег. № 74717-11).

Допускается применение аналогичных средств измерений, обеспечивающих определение метрологических характеристик поверяемых модулей с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системе мониторинга состояния основного и вспомогательного оборудования «ГЭС-3000»

ГОСТ 22261-94 ГСИ. Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ Р 8.800-2012 ГСИ. Государственная поверочная схема для средств измерений виброперемещения, виброскорости и виброускорения в диапазоне частот от $1\cdot 10^{-1}$ до $2\cdot 10^4$ Гц

ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы

ГОСТ 8.022-91 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне $1\cdot10^{-16}$... 30 А

ГОСТ 8.767-2011 ГСИ. Государственная поверочная схема для средств измерений силы пнременного электрического тока от $1\cdot10^{-8}$... 100 А в диапазоне частот от $1\cdot10^{-2}$ до $2\cdot10^{9}$ Гц

ГОСТ Р 8.648-2015 ГСИ. Государственная поверочная схема для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1 \cdot 10^{-1}$ до $1 \cdot 10^{6}$ Гц

Приказ Федерального агентства по техническому регулированию и метрологии от 15 февраля 2016 г. № 146 «Об утверждении Государственной поверочной схемы для средств измерений электрического сопротивления

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

ГОСТ 8.137-84 ГСИ. Государственный специальный эталон и государственная поверочная схема для средств измерений ускорения при ударном движении

4252-002-23157615-2016 ТУ Системы мониторинга состояния основного и вспомогательного оборудования «ГЭС-3000». Технические условия

Изготовитель

Общество с ограниченной ответственностью «Научно-технический центр «ЭНЕРГОАВТОМАТИЗАЦИЯ» (ООО «НТЦ «ЭНЕРГОАВТОМАТИЗАЦИЯ»)

ИНН: 7801300320

Юридический адрес: 450071, Республика Башкортостан, г. Уфа, Проспект Салавата Юлаева, дом 58, офис 401

Почтовый адрес: 450071, Республика Башкортостан, г. Уфа, ул. 50 лет СССР, д.39

Телефон: +7 (347) 286-16-84

E-mail: info@ntcea.ru

Испытательные центры

Общество с ограниченной ответственностью «Автоматизированные системы контроля Экспресс» (ООО «АСК Экспресс»)

Адрес: 111123, г. Москва, шоссе Энтузиастов, д.64

Телефон (факс): +7 (495) 504-15-11

Аттестат аккредитации ООО «АСК-Экспресс» по проведению испытаний средств измерений в целях утверждения типа RA.RU.312222 от 04.07.2017 г.

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева».

Адрес: 190005, Санкт-Петербург, Московский пр., 19 Телефон: +7 (812) 251-76-01, факс: +7 (812) 713-01-14

E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.