ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Ижевский мотозавод «Аксион-холдинг» вторая очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Ижевский мотозавод «Аксион-холдинг» вторая очередь (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, автоматизированного сбора, обработки, хранения, формирования отчётных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электрической энергии (счетчики) в режиме измерений активной электрической энергии по ГОСТ 31819.22-2012 и ГОСТ Р 52323-2005, и в режиме измерений реактивной электрической энергии по ГОСТ 31819.23-2012 и ГОСТ Р 52425-2005, вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень - информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) на базе контроллера сетевого индустриального СИКОН С70 и каналообразующую аппаратуру.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя ИВК «ИКМ-Пирамида» с программным обеспечением (ПО) «Пирамида 2000», автоматизированное рабочее место персонала (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Для ИК № 1 цифровой сигнал с выходов счетчика по проводным линиям связи интерфейса RS-485 поступает на входы УСПД, где осуществляется накопление, хранение и передача полученных данных на сервер ИВК «ИКМ-Пирамида», а также отображение информации по подключенным к УСПД устройствам. От УСПД измерительная информация по проводным линиям связи поступает на модем, далее по телефонной коммутируемой линии - на сервер ИВК «ИКМ-Пирамида».

Для ИК № 2 цифровой сигнал с выходов счетчика по проводным линиям связи интерфейса RS-485 поступает на сервер ИВК «ИКМ-Пирамида».

На сервере ИВК «ИКМ-Пирамида» осуществляется обработка полученных данных, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от ИВК «ИКМ-Пирамида» в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» Пермское РДУ и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учёта соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровни ИИК, ИВКЭ и ИВК. СОЕВ имеет доступ к серверу синхронизации шкалы времени по протоколу NTP - NTP-серверу ФГУП «ВНИИФТРИ», обеспечивающему передачу точного времени через глобальную сеть Интернет. Синхронизация системного времени NTP-серверов первого уровня осуществляется от сигналов шкалы времени Государственного первичного эталона времени и частоты. Погрешность синхронизации системного времени NTP-серверов первого уровня относительно шкалы времени UTC (SU) не превышает 10 мс. Сличение часов сервера ИВК «ИКМ-Пирамида» с часами NTP-сервера, передача точного времени через глобальную сеть интернет осуществляется с помощью протокола NTP в соответствии с международным стандартом сетевого взаимодействия RFC-5905. Контроль показаний времени часов сервера ИВК «ИКМ-Пирамида» производится по запросу каждые 30 мин, коррекция часов выполняется при расхождении на величину ±1 с.

Сравнение показаний часов УСПД с часами сервера ИВК «ИКМ-Пирамида» производится во время сеанса связи (1 раз в 30 минут). Корректировка часов УСПД выполняется автоматически при расхождении с часами сервера ИВК «ИКМ-Пирамида» на величину ± 1 с.

Для ИК № 1 сравнение показаний часов счетчика с часами УСПД производится во время сеанса связи (1 раз в 30 минут). Корректировка часов счетчика выполняется автоматически при расхождении с часами УСПД на величину ± 1 с. Для ИК № 2 сравнение показаний часов счетчика с часами сервера ИВК «ИКМ-Пирамида» производится 1 раз в сутки, корректировка часов счетчика выполняется автоматически независимо от наличия расхождений. Для ИК № 1 передача информации от счетчика до УСПД, от УСПД до сервера ИВК «ИКМ-Пирамида», а для ИК № 2 - от счетчика до сервера ИВК «ИКМ-Пирамида» - реализована с помощью каналов связи, задержки в каналах связи составляют 0,2 с.

Погрешность СОЕВ не превышает ±5 с.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика, УСПД и сервера ИВК «ИКМ-Пирамида» отражаются в соответствующих журналах событий.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «Пирамида 2000». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, а также с помощью специальных программных средств, что соответствует уровню «высокий» в соответствии Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1. Влияние математической обработки на результаты измерений не превышает ±1 единицы младшего разряда.

Таблица 1 - Идентификационные данные ПО «Пирамида 2000»

Идентификационные данные (признаки)	Значение									
Идентификационное наименование ПО	CalcCli- ents.dll	CalcLeak- age.dll	Cal- cLosses.d ll	Metrol- ogy.dll	Parse- Bin.dll	Par- seIEC.dll	ParseMod bus.dll	ParsePi- ramida.dll	Synchro NSI.dll	Verify- Time.dll
Номер версии (идентификационный номер) ПО		не ниже 3.0								
помер) по	e55712d0	b1959ff70	d79874d1	52e28d7b6	6f557f885	48e73a92	c391d642	ecf532935	530d9b01	1ea5429b
Цифровой	b1b21906	be1eb17c	0fc2b156	08799bb3c	b7372613	83d1e664	71acf405	ca1a3fd32	26f7cdc2	261fb0e2
идентификатор ПО	5d63da94	83f7b0f6d	a0fdc27e	cea41b548	28cd7780	94521f63	5bb2a4d3	15049af1f	3ecd814c	884f5b35
	9114dae4	4a132f	1ca480ac	d2c83	5bd1ba7	d00b0d9f	fe1f8f48	d979f	4eb7ca09	6a1d1e75
Алгоритм вычисле-										
ния цифрового	MD5									
идентификатора ПО										

Метрологические и технические характеристики

Таблица 2 - Состав ИК АИИС КУЭ и их метрологические характеристики

					Метрологические характеристики ИК				
Но- мер ИК	Наимено- вание точки измерений	TT	ТН	Счетчик	УСПД	Сервер	Вид электро- энергии	Границы допускаемой основной относительной погрешности, $(\pm\delta)$ %	Границы допускаемой относительной погрешности в рабочих условиях, (±δ) %
1	РУ-6-26, 3РУ-6 кВ, II с.ш., яч. 22	ТОЛ-СЭЩ-10 Кл.т. 0,5 75/5 Рег. № 32139-11	НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70	ПСЧ-4ТМ.05МК.12 Кл.т. 0,5S/1,0 Рег. № 64450-16	СИКОН С70 Рег. № 28822-05	ири лим	Активная Реактивная	1,3 2,5	3,3 5,7
2	РУ-6-7, ЗРУ-6 кВ, II с.ш., яч. №18	ТПОЛ-10 Кл.т. 0,5 600/5 Рег. № 1261-59	НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-08	_	Per. № 45270- 10	Активная Реактивная	1,3 2,5	3,3 5,7

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 минут.
 - 3 Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}} \cos j = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСПД и ИВК «ИКМ-Пирамида» на аналогичное утвержденного типа. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 - Основные технические характеристики ИК

Наименование характеристики ИК Наименование характеристики	Значение
Количество ИК	2
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
– ток, % от Іном	от 5 до 120
коэффициент мощности	0,9
– частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	от 90 до 110
– ток, % от Іном	от 5 до 120
коэффициент мощности:	
$-\cos\varphi$	0,5 до 1,0
$-\sin \varphi$	от 0,5 до 0,87
– частота, Гц	от 49,5 до 50,5
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения	
счетчиков, °С	от 0 до +40
температура окружающей среды в месте расположения УСПД, °С	от 0 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
счетчик ПСЧ-4ТМ.05МК:	
 среднее время наработки на отказ, ч, не менее 	165000
 среднее время восстановления работоспособности, ч 	2
счетчик СЭТ-4ТМ.03М:	1.40000
 среднее время наработки на отказ, ч, не менее 	140000
 среднее время восстановления работоспособности, ч 	2
УСПД:	70000
 среднее время наработки на отказ, ч, не менее 	70000
 среднее время восстановления работоспособности, ч 	2
сервер:	100000
 среднее время наработки на отказ, ч, не менее 	100000
 среднее время восстановления работоспособности, ч 	1
Глубина хранения информации: счетчик:	
 тридцатиминутный профиль нагрузки в двух направлениях, 	113
сут, не менее	5
 при отключении питания, лет, не менее УСПД: 	3
 суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу, а также электроэнергии, 	
потребленной за месяц по каждому каналу, сут, не менее	45
потреоленной за месяц по каждому каналу, сут, не менеепри отключении питания, лет, не менее	5
— при отключении питания, лет, не менее сервер:	3
сервер.хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5
ередеть измерении, лет, не менее	ر د ا

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика электрической энергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера.
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество
Трансформаторы тока	ТОЛ-СЭЩ-10	2 шт.
Трансформаторы тока	ТПОЛ-10	2 шт.
Трансформаторы напряжения	НТМИ-6-66	2 шт.
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК	1 шт.
Счетчики электрической энергии многофункциональные	CЭT-4TM.03M	1 шт.
Контроллеры сетевые индустриальные	СИКОН С70	1 шт.
Комплексы информационно-вычислительные	ИКМ-Пирамида	1 шт.
Методика поверки	МП ЭПР-010-2017	1 экз.
Паспорт-формуляр	ЭНСТ.411711.131.ФО	1 экз.

Поверка

осуществляется по документу МП ЭПР-010-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Ижевский мотозавод «Аксион-холдинг» вторая очередь. Измерительные каналы. Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 04.05.2017 г.

Основные средства поверки:

- ТТ по ГОСТ 8.217-2003 ГСИ. Трансформаторы тока. Методика поверки;
- ТН по ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки;
- по МИ 3196-2009 ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей;
- по МИ 3195-2009 ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей;
- счетчик ПСЧ-4ТМ.05МК в соответствии с документом ИЛГШ.411152.167РЭ1 «Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки», утвержденным ФБУ «Нижегородский ЦСМ» 28 апреля 2016 г.:
- счетчик СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- контроллер СИКОН С70 в соответствии с документом ВЛСТ 220.00.000 И1 «Контроллеры сетевые индустриальные СИКОН С70. Методика поверки», утвержденным ВНИИМС в 2005 г.;
- ИВК «ИКМ-Пирамида» в соответствии с документом ВЛСТ 230.00.000 И1 «Комплексы информационно-вычислительные «ИКМ-Пирамида». Методика поверки», утвержденным ФГУП «ВНИИМС» в 2010 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками и с ПО для работы с радиочасами МИР РЧ-02;
- термогигрометр CENTER (мод.315) (регистрационный номер в Федеральном информационном фонде 22129-09);
- барометр-анероид метеорологический БАММ-1 (регистрационный номер в Федеральном информационном фонде 5738-76);
- миллитесламетр портативный универсальный ТПУ (регистрационный номер в Федеральном информационном фонде 28134-04);
- прибор Энерготестер ПКЭ-А (регистрационный номер в Федеральном информационном фонде 53602-13).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Ижевский мотозавод «Аксион-холдинг» вторая очередь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Энергосистемы» (ООО «Энергосистемы»)

ИНН 3328498209

Адрес: 600022, г. Владимир, а/я 11

Юридический адрес: 600035, г. Владимир, ул. Куйбышева, д.16, офис 411

Телефон (факс): (4922) 60-23-22

Web-сайт: <u>www.ensys.su</u> E-mail: <u>post@ensys.su</u>

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс»

(ООО «ЭнергоПромРесурс»)

Адрес: 143444, Московская обл., Красногорский район, г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57

Телефон: (929) 935-90-11

E-mail: <u>energopromresurs2016@gmail.com</u>

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

М.п.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.0	С. Голубев	3

«____» _____2017 г.