ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Воркутауголь»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Воркутауголь» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

Сервер баз данных (далее - сервер БД) АИИС КУЭ входит в состав системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Воркутауголь» (рег. № 41483-09), системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Воркутауголь» с Изменением № 1 (рег. № 41483-13) и системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Воркутауголь» с Изменением № 1, 2 (рег. № 41483-16).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (далее - ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - информационно-вычислительный комплекс (далее - ИВК), включающий в себя каналообразующую аппаратуру, сервер БД АИИС КУЭ HP ProLiant DL360 G5, автоматизированные рабочие места персонала (далее - APM) и программное обеспечение (далее - ПО) ПК «Энергосфера».

Измерительные каналы (далее - ИК) состоят из двух уровней АИИС КУЭ.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- измерение активной и реактивной электроэнергии нарастающим итогом;
- периодический (1 раз в 30 минут) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 минут);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени показаний счетчиков электрической энергии;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

передача результатов измерений в организации-участники оптового и розничного рынков электроэнергии;

- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурировние и настройка парамеров АИИС КУЭ;
- ведение системы единого времени АИИС КУЭ (коррекция времени);
- формирование и хранение данных о состоянии средств измерений («Журналы событий»);
- передача журналов событий счетчиков.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Для ИК № 1 - 2 цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на входы преобразователя интерфейсов RS485/Ethemet, далее по каналу связи Ethernet корпоративной сети поступает на сервер БД АИИС КУЭ, расположенный в серверной АО «Воркутауголь». В качестве резервного используется канал сотовой связи стандарта GSM. Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на GSM-модем, после чего сигнал передаётся по каналу сотовой связи стандарта GSM. После преобразования в GSM-модеме цифровой сигнал передается на входы преобразователя интерфейсов RS232/Ethemet, далее по каналу связи Ethernet поступает на сервер БД АИИС КУЭ, расположенный в серверной АО «Воркутауголь».

Сервер БД АИИС КУЭ осуществляет вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

Передача информации от АИИС КУЭ в ПАК АО «АТС» с электронно-цифровой подписью субъекта ОРЭМ, а также в другие смежные субъекты ОРЭМ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (далее - СОЕВ), которая охватывает уровни ИИК и ИВК. СОЕВ имеет доступ к серверу синхронизации шкалы времени по протоколу NTP - NTP-серверу ФГУП «ВНИИФТРИ», обеспечивающему передачу точного времени через глобальную сеть Интернет. Синхронизация системного времени NTP-серверов первого уровня осуществляется от сигналов шкалы времени Государственного первичного эталона времени и частоты. Погрешность синхронизации системного времени NTP-серверов первого уровня относительно шкалы времени UTC(SU) не превышает 10 мс. Сличение часов NTP-сервера осуществляется с часами сервера БД АИИС КУЭ. Контроль показаний часов серверов осуществляется по запросу каждые 30 минут, коррекция часов осуществляется независимо от наличия расхождений.

Сличение показаний часов счетчиков и ИВК производится во время сеанса связи со счетчиками (1 раз в 30 минут). Коррекция часов счетчиков проводится при расхождении часов счетчика и ИВК более чем на ± 3 с, но не чаще 1 раза в сутки. Задержки в каналах связи составляют не более 0,2 с. СОЕВ обеспечивает синхронизацию времени от источника точного времени при проведении измерений количества электроэнергии с точностью не хуже ± 5 с/сут.

Журналы событий счетчика электроэнергии и сервера БД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ АО «Воркутауголь» используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

Tuomiga 1 Merpenerii reettire sha mimbre megyim 110	
Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

Номер ИК	Наименование ИК	Измерительные компоненты			Метрологические характеристики ИК		
		TT	ТН	Счётчик	Вид электро- энергии	Основная погреш- ность, %	Погрешность в рабочих условиях, %
ПС 110/6 кВ «Воргашорская-4»							
1	ПС 110/6 кВ «Воргашорская-4», ЗРУ-6 кВ, 1 сш, яч.1, ВТ-1-6	ТОЛ-10 УТ2.1 Кл. т. 0,5	ЗНОЛ.06-6У3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1	±3,0
		1500/5	$6000:\sqrt{3}/100:\sqrt{3}$		реактивная	±2,7	±4,8
2	ПС 110/6 кВ «Воргашорская-4», ЗРУ-6 кВ, 2 сш, яч.12, ВТ-2-6	ТОЛ-10 УТ2.1	3НОЛ.06-6У3				
		Кл. т. 0,5 1500/5	Кл. т. 0,5 6000:√3/100:√3	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная	±1,1	±3,0
		ТОЛ-10 У3 Кл. т. 0,5	ЗНОЛ.06-6УХЛЗ Кл. т. 0,5		реактивная	±2,7	±4,8
		1500/5	6000:√3/100:√3				

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 2 от 0 до плюс 40 °C.
- 4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, % от I _{ном}	от 100×до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle \mathrm{HOM}}$	от 90 до 110
- tok, % ot I_{hom}	от 5 до 120
- коэффициент мощности	от 0,5 инд. до 0,8 емк.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для TT и TH, $^{\circ}$ C	от -40 до +70
- температура окружающей среды в месте расположения	01 10 40 170
счетчиков, °С	от -40 до +60
- температура окружающей среды в месте расположения	
сервера БД, ℃	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее:	140000
- среднее время восстановления работоспособности, ч	2
Сервер БД:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания, лет, не менее	10
Сервер БД:	
- хранение результатов измерений и информации состояний	2.7
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - факты связи со счетчиком, приведшие к каким-либо изменениям данных и конфигурации;
 - отсутствие напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
 - перерывы питания счетчика с фиксацией времени пропадания и восстановления;
 - коррекции времени в счетчике;

- журнал сервера БД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере БД;
 - пропадание и восстановление связи со счетчиком;
 - полученные «Журналы событий» ИИК.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера БД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера БД.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 минут (функция автоматизирована);
- сбора 30 минут (функция автоматизирована).

Глубина хранения информации:

- счетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) АО «Воркутауголь» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Обозначение	Рег. №	Количество, шт.
Трансформатор тока	ТОЛ-10 УТ2.1	7069-79	4
Трансформатор тока	ТОЛ-10 У3	7069-79	2
Трансформатор напряжения	3НОЛ.06-6У3	3344-72	5
Трансформатор напряжения	ЗНОЛ.06-6УХЛЗ	3344-72	1
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-12	2
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 206.1-193-2017	-	1
Формуляр	77148049.422222.037-ПСФ	_	1

Поверка

осуществляется по документу МП 206.1-193-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Воркутауголь». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 17 июля 2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Воркутауголь», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Воркутауголь»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «АРСТЭМ-ЭнергоТрейд» (ООО «АРСТЭМ-ЭнергоТрейд»)

ИНН 6672185635

Адрес: 620075, г. Екатеринбург, ул. Белинского, 9/ ул. Красноармейская, 26

Тел.: +7 (343) 310-70-80; Факс: +7 (343) 310-32-18

E-mail: office@arstm.ru

Заявитель

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 111024, г. Москва, ул. Авиамоторная, д. 50, к. 2

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес:119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.