ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики-расходомеры массовые МИР

Назначение средства измерений

Счетчики-расходомеры массовые МИР предназначены для измерений массового и объемного расходов, массы и объема, плотности, температуры жидкостей и газов.

Описание средства измерений

Принцип действия счетчиков-расходомеров массовых МИР основан на использовании сил Кориолиса, действующих на поток измеряемой среды, двигающейся через петлеобразные трубки, которые возбуждаются с постоянной заданной частотой. Силы Кориолиса вызывают поперечные колебания противоположных сторон трубок и, как следствие, фазовые смещения их частотных характеристик, пропорциональные массовому расходу.

Фазовые смещения фиксируются чувствительными элементами (катушками индуктивности) и обрабатываются вычислителем. Так же фиксируется разность задающей частоты и фактической частоты колебания измерительных трубок. Разность частоты пропорциональна плотности измеряемой среды, проходящего через измерительные трубки. Температура измеряемой среды измеряется посредством чувствительного элемента Pt100 установленного в счетчике-расходомере массовом МИР.

Счетчики-расходомеры массовые МИР состоят из первичного преобразователя расхода (датчика) и вторичного преобразователя (вычислителя).

Первичный преобразователь расхода производит прямые измерения частоты и фазового смещения колебаний измерительных трубок, расположенных в его полости, температуры измеряемой среды. Измеренные значения передаются во вторичный преобразователь. Вторичный преобразователь осуществляет определение массового расхода, плотности жидкости, объемного расхода, объема измеряемой среды.

Вторичный преобразователь обеспечивает питание и обработку сигналов, поступающих с первичного преобразователя, вычисление массового и объемного расходов, массы и объема, плотности и температуры измеряемой среды, протекающей через первичный преобразователь, а также компенсацию измеряемых и рассчитываемых параметров от температуры и давления измеряемой среды. Вторичный преобразователь формирует частотный, токовый и цифровые выходные сигналы и выполняет их передачу на верхний уровень. Вторичный преобразователь имеет дисплей, позволяющий контролировать режимы и параметры работы счетчиков-расходомеров массовых МИР, настраивать их конфигурацию и проводить калибровку.

Счетчики-расходомеры массовые МИР оснащены функцией корректировки по давлению, позволяющей учитывать влияние давления на точность измерений счетчиков-расходомеров массовых МИР при подключении стороннего преобразователя давления по входу 4-20 мА, HART, RS 485 или вводится вручную. В этом случае дополнительная погрешность от изменения давления не возникает.

Счетчики-расходомеры массовые МИР выпускаются в модификациях P, N, C, которые отличаются прецизионностью исполнений внутренних конструкций первичного преобразователя расхода, электронными элементами, пределами допускаемой основной относительной погрешности и диапазонами измерений расхода.

Счетчики-расходомеры массовые МИР модификаций P, N, C выпускаются в исполнениях: 10, 15, 20, 25, 50, 80, 100, 150, 200, 250, которые отличаются диаметром прохода внутренней полости первичного преобразователя расхода.

Вторичный преобразователь может, устанавливается непосредственно на первичный преобразователь (компактный монтаж), либо может быть смонтирован отдельно (раздельный монтаж).

Вторичные преобразователи выпускаются в следующих моделях: DPT 102, DPT 103, DPT 104, DPT 105, которые отличаются способом монтажа с первичным преобразователем и языком меню дисплея в следующих вариациях:

- DPT 102 раздельный монтаж с первичным преобразователем, язык меню дисплея английский;
- DPT 103 компактный монтаж с первичным преобразователем, язык меню дисплея английский;
- DPT 104 раздельный монтаж с первичным преобразователем, язык меню дисплея русский;
- DPT 105 компактный монтаж с первичным преобразователем, язык меню дисплея русский.

Счетчики-расходомеры массовые МИР с номинальными диаметрами DN100 и более выпускаются с усилителями сигналов, расположенными непосредственно на первичном преобразователе, предназначенные для усиления сигнала, подаваемого на генерирующую катушку счетчиков-расходомеров массовых МИР.

Маркировка счетчиков-расходомеров массовых МИР: МИР-X-YY-Z-D10X, где X — модификация, YY — исполнение, Z — пределы допускаемой основной относительной погрешности расходомера при измерении массового расхода и массы жидкости, D10X — модель вторичного преобразователя.

Общий вид счетчиков-расходомеров массовых МИР представлен на рисунке 1 и 2.

Схема пломбировки от несанкционированного доступа представлена на рисунке 2. Пломбировка осуществляется изготовителя нанесением наклеек из легко разрушаемого материала на вторичный преобразователь.

Рисунок 1— Общий вид счетчиков-расходомеров массовых МИР с раздельным и компактным монтажом

Рисунок 2 — Схема пломбировки от несанкционированного доступа счетчиков-расходомеров массовых МИР

Программное обеспечение

счетчиков-расходомеров массовых МИР встроенное.

Программное обеспечение счетчиков-расходомеров массовых МИР (далее – Π O), реализует алгоритмы вычисления параметров потока и отвечает за хранение конфигурационных параметров первичного преобразователя расхода и значения сумматоров расхода.

ПО, получает и обрабатывает информацию о параметрах потока и может отображать ее на дисплее вторичного преобразователя или передавать удаленным устройствам по различным каналам связи, а также реализует все сервисные функции, связанные с настройкой дополнительных функций счетчика-расходомера массового МИР. Изменение ПО может быть произведена только специалистами предприятия—изготовителя. Изменение и дополнение функциональных и диагностических возможностей счетчика-расходомера массового МИР, не влияющие на метрологические характеристики, вносимые изготовителем в ПО, влечет за собой изменение номера версии выпускаемого ПО. Идентификационные данные ПО приведены в таблице 1. При этом метрологическая часть ПО всегда остается неизменной.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	DPT	
Номер версии (идентификационный номер) ПО v. 3.83 2015.02 и выше*		
Цифровой идентификатор ПО –		
Примечания: * – указывается в паспортах счетчиков-расходомеров массовых МИР		

ПО не влияет на метрологические характеристики счетчиков-расходомеров массовых МИР. Защита ПО счетчиков-расходомеров массовых МИР от преднамеренных и непреднамеренных изменений соответствует уровню «средний» согласно Р 50.2.077-2014. Примененные специальные средства защиты исключают возможность несанкционированной модификации, обновления (загрузки), удаления, изменения конфигурации и иных преднамеренных изменений ПО и измеряемых (вычисляемых) данных.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – Метрологические характеристики				
11	Значение параметра			
Наименование параметра	модификация	модификация	модификация	
	МИР-Р	МИР-N	МИР-С	
Измеряемая среда		жидкость, газ		
Диапазон измерений массового расхода		от 0 до 2700		
жидкости и газа, т/ч (объемного, ${\rm m}^3/{\rm q}$)*		01 0 до 2700		
Пределы допускаемой основной				
относительной погрешности расходомера при				
измерении массового расхода и массы, %				
– жидкости	$\pm 0,1;\pm 0,15$	$\pm 0,2;\pm 0,25$	$\pm 0,5$	
– газа	±0,5	±1,0	±1,5	
Пределы допускаемой основной				
относительной погрешности расходомера при	±0,1; ±0,15	±0,2; ±0,25	±0,5	
измерении объемного расхода и объема			_0,5	
жидкости в рабочих условиях, %				
Диапазон измерений плотности, кг/м ³				
для жидкости		от 600 до 3000		
– для газа	от 0,5 до 600			
Пределы допускаемой абсолютной		$\pm 0.5; \pm 1.0;$	$\pm 1,0; \pm 2,0;$	
погрешности расходомера при измерении	$\pm 0,5;\pm 1,0$	± 2.0	$\pm 5,0$	
плотности, $\kappa \Gamma / M^3$			±3,0	
Диапазон температуры измеряемой среды, в				
зависимости от исполнения первичного	от -50 до +350			
преобразователя °C				
Пределы допускаемой абсолютной	±0,5; ± 1			
погрешности расходомера при измерении				
температуры измеряемой среды, °С				
Приманация				

Примечание:

Значение наибольшего массового расхода жидкости и газа, т/ч (объемного, ${\rm m}^3/{\rm q}$) указано для каждого счетчика-расходомера массового МИР в таблице 3

Таблица 3 - Пределы дополнительных погрешностей, вызванных влиянием изменения температуры и давления измеряемой среды,

наибольшие значения расхода

	Наибольший	$\delta t_{\text{доп}}$,		δn		Стабильно	ость нуля, ZS**	, т/ч (м ³ /ч)
Исполнение	расхода, т/ч (м ³ /ч)*	(% от макс. pacхода)/10 °C	$\delta \rho t_{\text{доп}},$ (κΓ/м ³)/10 °C	бр _{доп,} (% от величины расхода) / МПа	$\delta \rho p_{\text{доп,}} \ (\kappa \Gamma / \text{м}^3) / \text{М} \Pi a$	МИР-Р	МИР-N	МИР-С
10	1,2	±0,000125		_	_	0,00006	0,00012	0,00012
15	4,5	±0,000125		_	+0,058	0,00025	0,00034	0,00034
20	9,45	±0,000125		_	-0,029	0,00047	0,00072	0,00072
25	25,5	±0,000125	±0,15	-0,003	-0,087	0,0016	0,00192	0,00192
50	94,5	$\pm 0,0002$		-0,011	+0,0145	0,0035	0,0045	0,0071
80	240	$\pm 0,0002$		-0,025	+0,0029	0,008	0,012	0,018
100	540	±0,0003		-0,058	-0,0145	0,016	0,027	0,0428
150	825	±0,0002		-0,035	-0,041	0,030	0,045	0,0618
200	1650	±0,0003		-0,020	-0,037	0,070	0,110	0,150
250	2700	$\pm 0,0004$		-0,014	-0,021	0,130	0,180	0,240

Примечание:

 $\delta t_{\text{доп}}$ – дополнительная погрешность при измерении расхода и количества от изменения температуры от температуры среды при корректировке нуля (% от макс. расхода)/10 °C;

 $\delta \rho t_{доп}$ – дополнительная погрешность при измерении плотности от изменения температуры от температуры среды при корректировке нуля, $(\kappa \Gamma/M^3)/10$ °C;

δр_{доп} – дополнительная погрешность при измерении расхода и количества от изменения давления от давления среды при калибровке (% от величины расхода) / МПа;

 $\delta \rho p_{доп}$ – дополнительная погрешность при измерении плотности от изменения давления от давления среды при корректировке нуля, $(\kappa \Gamma/M^3)/M\Pi a$;

* – объемный расход определяется в зависимости от плотности измеряемой среды;

** – дополнительная погрешность от стабильности нуля рассчитывается по формуле:
$$\delta_{ZS} = \frac{25}{Q} \cdot 100$$
, %

Таблица 4 – Основные технические характеристики

Наименование параметра	Значение параметра
Номинальный диаметр фланцевых соединений	DN15 – DN300
Избыточное давления среды, МПа, не более	10
Тип выходных сигналов	импульсный (частотный) от 0 до 10 к Γ ц; токовый $4-20$ мA; HART (опция); RS-485 (Modbus RTU)
Параметры электрического питания:	
а) переменный ток	
 напряжение питания, В 	220±22
– частота, Гц	50±1
б) постоянный ток	
напряжение питания, В	от 21,6 до 26,4
Потребляемая мощность переменного тока, Вт,	
не более:	
– от исполнения 10 до исполнения 80	22
– от исполнения 100 до исполнения 250	45
Потребляемая мощность постоянного тока, Вт,	
не более:	
– от исполнения 10 до исполнения 80	17
– от исполнения 100 до исполнения 250	34
Условия эксплуатации:	
– температура окружающей среды, °С	от -50 до +50
– относительная влажность, %, не более	95
– атмосферное давление, кПа	от 84 до 106,7
Средний срок службы, лет	15
Средняя наработка на отказ, ч	150000

Таблина	5 –	Габаритные	размеры	и масса	счетчиков-	расхоломе	оов массовых МИ	Р
тислици	_	I wowpillible	pasmepbi	II MIGGOG	O TOT TITLEOD	расподолго	JOB MIGGOODBIN THIII	

Исполнение	Габаритные размеры датчика (длина х ширина х высота), мм, не более	Масса датчика, кг, не более	Габаритные размеры вычислителя (длина х ширина х высота), мм, не более	Масса вычислителя, кг, не более
10	380x190x468	10,5	338x137x274	5,0
15	380x190x468	10,5	338x137x274	5,0
20	490x200x550	14,0	338x137x274	5,0
25	625x210x580	25,0	338x137x274	5,0
50	870x230x950	50,0	338x137x274	5,0
80	1015x287x1115	89,0	338x137x274	5,0
100	1130x495x1375	208,0	338x137x274	5,0
150	1257x545x1290	248,0	338x137x274	5,0
200	1360x595x1715	365,0	338x137x274	5,0
250	1530x630x2070	580,0	338x137x274	5,0

Знак утверждения типа

наносится на маркировочную табличку, закрепленную на корпусе первичного преобразователя расхода, методом лазерной гравировки и в центр титульных листов руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Таблица 6 – Комплектность счетчиков-расходомеров массовых МИР

Наименование	Обозначение	Количество
Счетчик-расходомер массовый МИР	_	1 шт.
Кабель связи (при раздельном исполнении)	_	1 шт.
Руководство по эксплуатации	КС 56.200-000 РЭ	1 экз.
Паспорт	КС 56.200-000 ПС	1 экз.
Методика поверки	МП 0580-1-2017	1 экз.

Поверка

осуществляется по документу МП 0580-1-2017 «Инструкция. ГСИ. Счетчики-расходомеры массовые МИР. Методика поверки», утвержденному Φ ГУП «ВНИИР» 15.03.2017 г.

Основные средства поверки:

- вторичный эталон по ГОСТ 8.142-2013 или ГОСТ 8.374-2013 в диапазоне расходов соответствующем диапазону расходов поверяемого счетчика-расходомера массового МИР;
- рабочий эталон единиц массового и (или) объемного расходов (массы и (или) объема) жидкости 1 или 2 разряда в диапазоне значений по ГОСТ 8.142 или ГОСТ 8.374 в диапазоне расходов соответствующем диапазону расходов поверяемого счетчика-расходомера массового МИР;
- рабочий эталон единицы температуры 3-го разряда по ГОСТ 8.558-2009 с пределами допускаемой абсолютной погрешности ± 0.2 °C;
- рабочий эталон единицы плотности 1-го разряда по ГОСТ 8.024-2002 с диапазоном значений соответствующим контрольным точкам при поверке.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке счетчика-расходомера массового МИР.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к счетчикам – расходомерам массовым МИР

ГОСТ 8.510-2002 ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости

ГОСТ 8.142-2013 ГСИ. Государственная поверочная схема для средств измерений массового и объемного расхода (массы и объема) жидкости

ГОСТ 8.374-2013 ГСИ. Государственная поверочная схема для средств измерений объемного и массового расхода (объема и массы) воды

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

ГОСТ 8.024-2002 ГСИ. Государственная поверочная схема для средств измерений плотности

ТУ 4213-014-21189467-2016 Счетчики-расходомеры массовые МИР. Технические условия

Изготовитель

Общество с ограниченной ответственностью Научно-техническая фирма «БАКС» (ООО НТФ «БАКС»)

ИНН 6311007747

Адрес: 443022, РФ, г.Самара, проспект Кирова, д. 10

Телефон/факс: (846)267-38-12, (846)267-38-13, (846)267-38-14

Web-сайт: www.bacs.ru

E-mail: info@bacs.ru, kom@bacs.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии» (ФГУП «ВНИИР»)

Адрес: 420088, г. Казань, ул. 2-ая Азинская, д. 7 А

Телефон:(843) 272-70-62 Факс: (843) 272-00-32 E-mail: <u>office@vniir.org</u> Web-сайт: www.vniir.org

Аттестат аккредитации ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310592 от 24.02.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.C. 1	1 олубев

М.п. «___ » _____ 2017 г.