ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы электронные Штрих ВМ 100

Назначение средства измерений

Весы электронные Штрих ВМ 100 (далее - весы) предназначены для статического измерения массы товаров.

Описание средства измерений

Принцип действия весов основан на преобразовании деформации упругого элемента весоизмерительного тензорезисторного датчика (далее - датчик), возникающей под действием силы тяжести груза, в аналоговый электрический сигнал, изменяющийся пропорционально массе взвешиваемого груза. Сигнал преобразуется устройством обработки аналоговых данных, находящимся в весоизмерительном устройстве весов, в цифровой код и выводится, как результат взвешивания, на дисплей терминала и/или на внешнее электронное устройство (компьютер, принтер).

Конструктивно весы состоят из весоизмерительного устройства, включающего в себя корпус, датчик и терминал, и грузоприемного устройства (далее - ГПУ). Весы оснащены лазерным устройством считывания штрих-кода товара (далее - лазерное устройство), отличающихся моделями лазерных устройств (в обозначении весов - индексы A, A1, A2, A3, B, C или C1).

Весы изготавливаются однодиапазонными и двухинтервальными. Весы выпускаются в четырех модификациях, отличающихся значениями максимальной нагрузки (Max) и значениями поверочного интервала (*e*) (обозначаются Штрих BM 100 6-1.2; Штрих BM 100 6-2; Штрих BM 100 15-2.5 или Штрих BM 100 15-5).

Для связи с персональным компьютером весы поставляются с интерфейсом:

- RS-232 (индекс P);
- USB (индекс Ю);
- с двумя интерфейсами: USB и RS-232 (индекс ЮР);
- без интерфейса (индекс отсутствует).

Весы имеют следующие устройства и функции:

- полуавтоматическое устройство установки нуля (ГОСТ OIML R 76-1-2011, Т.2.7.2.2);
- устройство первоначальной установки нуля (ГОСТ OIML R 76-1-2011, Т.2.7.2.4):
- устройство слежения за нулем (ГОСТ OIML R 76-1-2011, T.2.7.3);
- устройство тарирования (выборки массы тары) (ГОСТ OIML R 76-1-2011 T.2.7.4).

На корпусе весоизмерительного устройства и корпусе лазерного устройства прикрепляются маркировочные таблички, разрушающиеся при удалении, содержащие следующую информацию:

- наименование или товарный знак предприятия-изготовителя;
- условное обозначение весов;
- номер весов по системе нумерации предприятия-изготовителя;
- класс точности весов по ГОСТ OIML R 76-1-2011;
- значение максимальной нагрузки (Мах);
- значение минимальной нагрузки (Min);
- значения поверочного интервала (e) и действительной цены деления (d);
- значение максимальной выборки массы тары (Т-);
- знак утверждения типа средства измерений;
- диапазон рабочих температур;
- параметры электрического питания.
- год изготовления.

Обозначение весов для заказа имеет вид:

Весы электронные Штрих ВМ 100[X] [1] - [2] [3],

где Штрих ВМ 100 - обозначение типа весов;

- [X] индекс модели устройства считывания штрих-кода: А, А1, А2, А3, В, С или С1;
- [1] значение Мах весов, кг: 6 или 15;
- [2] значение е весов, г:
 - 2 или 5 для однодиапазонных весов;
 - 1.2 или 2.5 для двухинтервальных весов;
- [3] индекс наличия интерфейса: Р, Ю, ЮР или отсутствие индекса. Пример обозначения весов при заказе:

Весы электронные Штрих ВМ 100А1 15 - 2.5 ЮР.

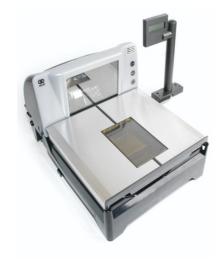

Общий вид весов представлен на рисунках 1 и 2.

Рисунок 1 - Общий вид весов с индексами А, А1, А2, А3

Индекс В

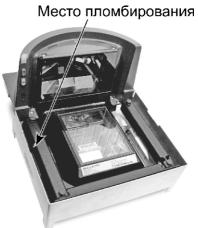

Индекс С1

Рисунок 2 - Общий вид весов с индексами В, С и С1

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунках 3 и 4.

Индекс А

Индекс А1

Рисунок 3 - Схема пломбировки весов с индексами A и A1 и нанесения знака поверки

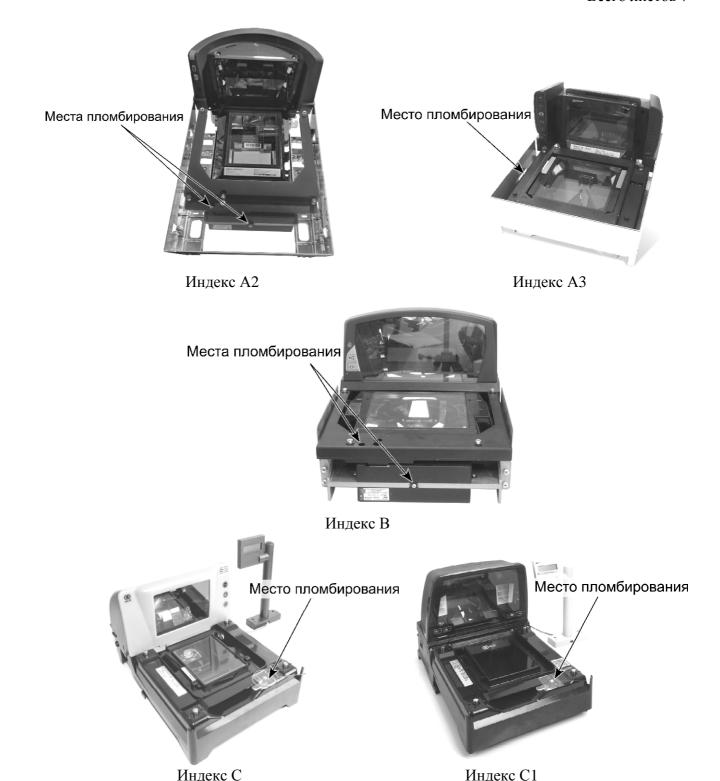


Рисунок 4 - Схема пломбировки весов с индексами A2, A3, B, C, C1 и нанесения знака поверки

Программное обеспечение

Метрологически значимое программное обеспечение (ПО) является встроенным и находится в энергонезависимой памяти микроконтроллера весов, доступ к которому защищен пломбой, как показано на рисунках 3 и 4, и загружается только на заводе-изготовителе с использованием специального оборудования. ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс после загрузки.

Метрологически значимые параметры изменяются в режиме градуировки, доступ к которому возможен только на заводе-изготовителе и в сервисном центре, и защищен пломбой, как показано на рисунках 3 и 4.

Идентификационным признаком ПО служит номер версии, который отображается на дисплее терминала при включении весов в сеть.

Нормирование метрологических характеристик производится с учетом применения ПО. Конструкция весов исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Vx.x
Номер версии (идентификационный номер) ПО	X.X
Цифровой идентификатор ПО	*
0 0	

где х - принимает значения от 0 до 9.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

05	Min,	Max,	e = d,	m,	mpe,	T-,	
Обозначение модификаций	КГ	КГ	Γ	КГ	Γ	КГ	
Штрих ВМ100 6 - 1.2	0,02	6		от 0,02 до 0,5 включ.	± 0,5	от 0 до 3	
			1	св. 0,5 до 2 включ.	± 1		
				св. 2 до 3 включ.	± 1,5		
			2	св. 3 до 4 включ.	± 2		
				св. 4 до 6 включ.	± 3		
	0,04	6		от 0,04 до 1 включ.	± 1		
Штрих ВМ100 6 - 2			2	св. 1 до 4 включ.	± 2		
				св. 4 до 6 включ.	± 3		
Штрих ВМ100 15 - 2.5	0,04	6	2	от 0,04 до 1 включ.	± 1		
				св. 1 до 4 включ.	± 2		
				св. 4 до 6 включ.	± 3		
		15	5	св. 6 до 10 включ.	± 5	от 0 до 7,5	
			3	св. 10 до 15 включ.	± 7,5	010 до 7,3	
Штрих ВМ100 15 - 5	0,1	15		от 0,1 до 2,5 включ.	± 2,5		
			5	св. 2,5 до 10 включ	± 5		
				св. 10 до 15 включ.	± 7,5		

Пределы допускаемой погрешности в эксплуатации равны удвоенному значению пределов допускаемой погрешности при первичной поверке (mpe).

Пределы допускаемой погрешности весов после выборки массы тары соответствуют пределам допускаемой погрешности для массы нетто.

^{* -} данные недоступны, так как данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс после опломбирования

Основные технические характеристики весов приведены в таблице 3.

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение
Пределы допускаемой погрешности устройства установки на нуль, г	±0,25 e
Показания индикации массы, кг, не более	Max + 9 e
Диапазон установки на нуль и слежения за нулём, % от Мах, не более	4
Диапазон первоначальной установки нуля, % от Мах, не более	20
Особый диапазон рабочих температур, °С	от 10 до 40
Параметры электрического питания от сети переменного тока	
(через адаптер электропитания):	
- напряжением, В	от 187 до 242
- частотой, Гц	от 49 до 51
Потребляемая мощность, ВА, не более	10
Средняя наработка на отказ, ч	19000
Средний срок службы, лет	10

Габаритные размеры весов, размеры ГПУ и масса весов в зависимости от модели устройства считывания штрих-кода приведены в таблице 4.

Таблица 4 - Технические характеристики

Индекс модели	Габаритные размеры весов	Размеры ГПУ (Д'Ш),	Масса весов,
лазерного устройства	(Д'Ш'В), мм, не более	мм, не более	кг, не более
A	460´285´240	270′285	9,2
A1	360´285´240	220´285	9,0
A2	510´285´240	320′ 285	10,0
A3	360´285´230	220´285	8,3
В	400´290´235	285´290	9,0
C	400´290´230	285´290	8,7
C1	410´285´275	275´285	8,8

Знак утверждения типа

наносится типографским способом на титульный лист Руководства по эксплуатации и фотохимическим способом на табличку, закрепленную на корпусе лазерного устройства.

Комплектность средства измерений

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	Количество
Весы электронные	Штрих ВМ100	1
Адаптер сетевого питания		1
Руководство по эксплуатации	SM11062.00.100 PЭ	1

Поверка

осуществляется по ГОСТ OIML R 76-1-2011 «ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания». (Приложение ДА. Методика поверки весов).

Основные средства поверки:

Рабочий эталон 4-го разряда по ГОСТ 8.021-2015 «ГСИ. Государственная поверочная схема для средств измерений массы» гири номинальной массой от 20 г до 10 кг, класса точности M_1 по ГОСТ OIML R 111-1-2009 «ГСИ. Гири классов E_1 , E_2 , F_1 , F_2 , M_1 , $M_{1\text{-}2}$, M_2 , $M_{2\text{-}3}$ и M_3 . Метрологические и технические требования».

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и на пломбы, как показано на рисунках 3 и 4.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам электронным Штрих BM 100

ГОСТ 8.021-2015 ГСИ. Государственная поверочная схема для средств измерений массы ГОСТ OIML R 76-1-2011 ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ТУ 28.29.31-011-56828934-2017 Весы электронные Штрих ВМ 100. Технические условия

Изготовитель

Акционерное общество «Штрих-М» (АО «Штрих-М»)

Юридический адрес: 143401, Московская область, г. Красногорск, ул. Речная, д. 8

Почтовый адрес: 115280, г. Москва, ул. Ленинская Слобода, д. 19, стр. 4

ИНН 5024046846

Телефон (факс): (495) 787-60-90

E-mail: <u>info@shtrih-m.ru</u>

Испытательный центр

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, г. Москва, Волоколамское шоссе, д. 88, стр.8

Телефон (факс): (495) 491-78-12

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313 от 09.10.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	Μπ	« »	2017 г