ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ГТУ-ТЭЦ в г. Владивостоке на площадке Центральной пароводяной бойлерной

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ГТУ-ТЭЦ в г. Владивостоке на площадке Центральной пароводяной бойлерной (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии (далее - счеткики) по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - измерительно-вычислительный комплекс электроустановки (далее - ИВКЭ), включающий в себя устройство сбора и передачи данных ARIS MT200 (далее - УСПД), в состав которого входит приемник сигналов точного времени от спутниковой глобальной системы позиционирования (GPS/ГЛОНАСС), коммутационное оборудование.

3-й уровень - информационно-вычислительный комплекс (ИВК) ПАО «РАО ЭС Востока», включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее - ПО) ПК «Энергосфера».

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов.

Дальнейшая передача информации в ИАСУ КУ АО «АТС», АО «СО ЕЭС» и другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 и других в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в АО "АТС", АО "СО ЕЭС" и смежным субъектам» к Договору о присоединении к торговой системе оптового рынка.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена устройством синхронизации времени (далее - УСВ), на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS/ГЛОНАСС), встроенного в УСПД. Погрешность часов УСВ не более ±1 с. УСВ обеспечивает автоматическую коррекцию часов УСПД. От УСПД происходит коррекция часов сервера БД и счетчиков ИИК. Сравнение времени сервера БД со временем УСПД осуществляется каждый час. Коррекция часов сервера БД и УСПД проводится при расхождении часов сервера БД и УСПД более чем на ±3 с, пределы допускаемой абсолютной погрешности синхронизации часов сервера БД и УСПД не более ±1 с. Часы счетчиков синхронизируются от часов УСПД при каждом сеансе связи, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±3 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Журналы событий счетчика электроэнергии отражает: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера БД и УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии 7.1, в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ПК «Энергосфера»	
(модулей ПО)	pso_metr.dll	
Номер версии ПК «Энергосфера»	7.1	
Номер версии (идентификационный номер) ПО	1.1.1.1	
Цифровой идентификатор ПО	6C38CCDD09CA8F92D6F96AC33D157A0	
(контрольная сумма)	0C36CCDD09CA6F92D0F90AC33D13/A0E	
Алгоритм вычисления цифрового	MD5	
идентификатора ПО	INDS	

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом Π O.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

	з 2 состав померти	Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	Вид электроэне ргии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
1	ГТУ-ТЭЦ в г.Владивостоке на площадке Центральной пароводяной бойлерной, КРУЭ-110 кВ, яч. 1, КЛ-110 кВ «ГТУ-ТЭЦ-ПС 2Р»	СТІG Кл. т. 0,2S 600/1	VDGW2-110X Кл. т. 0,2 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная	±0,6 ±1,3	±1,5 ±2,6
2	ГТУ-ТЭЦ в г.Владивостоке на площадке Центральной пароводяной КРУЭ-110 кВ, яч. 2, КВЛ-110 кВ «ГТУ-ТЭЦ-ПС Зеленый угол»	СТІС Кл. т. 0,2S 400/1	VDGW2-110X Кл. т. 0,2 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная реактивная	±0,6 ±1,3	±1,5 ±2,6

Продолжение таблицы 2

продоли	Продолжение таолицы 2							
1	2	3	4	5	6	7	8	9
3	ГТУ-ТЭЦ в г.Владивостоке на площадке Центральной пароводяной КРУЭ-110 кВ, яч. 3, КВЛ-110 кВ «ГТУ-ТЭЦ-ПС СИ»	СТІG Кл. т. 0,2S 600/1	VDGW2-110X Кл. т. 0,2 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная	±0,6 ±1,3	±1,5 ±2,6
4	ГТУ-ТЭЦ в г.Владивостоке на площадке Центральной пароводяной бойлерной КРУЭ-110 кВ, яч. 4, КЛ-110 кВ «ГТУ-ТЭЦ-ПС 1Р»	СТІG Кл. т. 0,2S 400/1	VDGW2-110X Кл. т. 0,2 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная	±0,6 ±1,3	±1,5 ±2,6
5	ГТУ-ТЭЦ в г.Владивостоке на площадке Центральной пароводяной бойлерной КРУЭ-110 кВ, яч.5 ШСМВ-110 кВ	СТІG Кл. т. 0,2S 1000/1	VDGW2-110X Кл. т. 0,2 110000:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная реактивная	±0,6 ±1,3	±1,5 ±2,6

Продолжение таблицы 2

1	2 гаолицы 2	3	4	5	6	7	8	9
6	Газотурбинная установка Г-1, линейные вывода турбогенератора в составе газотурбинной установки Г-1	ВСТ Кл. т. 0,5S 4000/1	UKM 24/3 Кл. т. 0,2 10500:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная реактивная	±0,9 ±2,4	±2,9 ±4,7
7	Газотурбинная установка Г-2, линейные вывода турбогенератора в составе газотурбинной установки Г-2	ВСТ Кл. т. 0,5S 4000/1	UKM 24/3 Кл. т. 0,2 10500:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная реактивная	±0,9 ±2,4	±2,9 ±4,7
8	Газотурбинная установка Г-3, линейные вывода турбогенератора в составе газотурбинной установки Г-3	ВСТ Кл. т. 0,5S 4000/1	UKM 24/3 Кл. т. 0,2 10500:√3/100:√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	ARIS MT200	активная реактивная	±0,9 ±2,4	±2,9 ±4,7

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
9	ГТУ-ТЭЦ в г.Владивостоке на площадке Центральной пароводяной бойлерной КРУ-6 кВ, Рез.С-6 кВ яч. 58. КЛ-6 кВ Ф-25 «ПС Стройиндустрия-ГТУ-ТЭЦ»	ТЛП-10-6 Кл. т. 0,5S 1000/5	4 3НОЛПМ-6 Кл. т. 0,5 6300:√3/100:√3	5 СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0	ARIS MT200	активная	±1,2 ±2,8	±3,4 ±5,8

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 9 от 0 до плюс 30 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков и УСПД на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в Таблице 2. Замена оформляется актом в установленном в ПАО «РАО ЭС Востока» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики АИИС КУЭ приведены в таблице 3.

Таблица 3 - Основные технические характеристики АИИС КУЭ

Таблица 3 - Основные технические характеристики АИИС КУЭ	
Наименование характеристики	Значение
Количество измерительных каналов	9
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до102
- tok, % ot I_{hom}	от 100 до 120
- коэффициент мощности	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
- коэффициент мощности cosj (sinj)	от 0,5 инд. до 0,8 емк
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	от -40 до +60
электросчетчиков и УСПД, °С	
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	165000
- среднее время наработки на отказ, ч, не менее	2
- среднее время восстановления работоспособности, ч	
УСПД:	88000
- среднее время наработки на отказ, ч, не менее	2
- среднее время восстановления работоспособности, ч	
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания, лет, не менее	10
УСПД:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5
1	1

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ГТУ-ТЭЦ в г. Владивостоке на площадке Центральной пароводяной бойлерной типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформатор тока	CTIG	55676-13	15
Трансформатор тока	BCT	58147-14	9
Трансформатор тока	ТЛП-10	30709-11	3
Трансформатор напряжения	VDGW2-110X	42563-09	2
Трансформатор напряжения	UKM 24/3	51204-12	18
Трансформатор напряжения	ЗНОЛПМ-6	35505-07	3
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.16	36697-12	8
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M.01	36697-12	1
Устройство сбора и передачи данных	ARIS MT200	53992-13	1
Сервер	IBM System X3650 M4	-	1

Окончание таблицы 4

1	2	3	4
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	МП 206.1-136-2017	-	1
Паспорт-Формуляр	-	-	1

Поверка

осуществляется по документу МП 206.1-136-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ГТУ-ТЭЦ в г. Владивостоке на площадке Центральной пароводяной бойлерной. Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 03 августа 2017 г.

Оновные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М.16 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- счетчиков СЭТ-4ТМ.03М.01 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД ARIS MT200- по документу «Контроллеры многофункциональные ARIS MT200. Методика поверки. ПБКМ.424359.005», согласованному с ГЦИ СИ ФГУП «ВНИИМС» 13 мая 2013 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0.1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0.1%;
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0.01 до 19.99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ГТУ-ТЭЦ в г. Владивостоке на площадке Центральной пароводяной бойлерной, аттестованной Φ ГУП «ВНИИМС», аттестат об аккредитации \mathfrak{N} RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ГТУ-ТЭЦ в г. Владивостоке на площадке Центральной пароводяной бойлерной

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Прософт-Системы»

(ООО «Прософт-Системы»)

ИНН 6660149600

Адрес: 620102, г. Екатеринбург, ул. Волгоградская, 194а

Телефон: +7 (343) 356-51-11 Факс: +7 (343) 310-01-06 E-mail: info@prosoftsystems.ru

Заявитель

Акционерное общество «РЭС Групп» (АО «РЭС Групп»)

ИНН 3328489050

Адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Телефон: +7 (4922) 22-21-62 Факс: +7 (4922) 42-31-62 E-mail: post@orem.su Web-сайт: http://orem.su

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.